Expense
Tracker
With
JavaScript

Author: Kabir Yusuf Bashir
Team Piccolo

2025

Expense Tracker

Track your expense

Version 2.1.0

Expense Tracker App

Good Morning, Mr Piceolo

Expense List

Rent 200000
School Fees 150000
Groceries 50000
Total 400000

[e

Table of Contents

TaDIE OF CONLENLSviiiiiiiiiiet et b e bt b e n e 3
TaDIE OF FIZUIESeciiiiiiiieiiee et 7
INtrodUCtion t0 JAVASCTIPE .vviiivviiiiiiieiiiiie sttt et e et e b e e bt e e e nbb e e e nbe e e nnbeeans 13
FOOt NOTE: ..ot 13
Adding JavaScript t0 @ WED PAZE.....cciiuiiiiiiiiiiiii e 13
INERINAL ... 14
EXEEINal....ooiiiiiiiii i 15
JavaScript DISPlay Data.........ccviiiiieiiiieiie e 17
TNNETHTIML ... bbbt n e nne s 17

14 (0108001 s LA G 1< () TSR 17
WINAOW.ALETT() 1ttt ettt b e bt e b e e nneenne s 17
(o0 o R0 (T8 (0 T T TR P T PR OPRPRPTOTRPPRN 17
JAVASCIIPE VATIADIES ... 18
When to Use var, Let, OF CONSL?coiuiiiiiiiiiiie et e e e e s sbae e e e et e e e s s nae e e e e snraneeeanns 19
JaVASCIIPt IACNTTIETSviiieiiieiee e 19
JAVASCIIPE LEE ... 19
BIOCK SCOPE ...t 19
GlODAL SCOPE.... et 20
JAVASCIIPE COMSE ..ttt 21
Cannot be ReasSIZNEAccviiiiiieiii e 21
When to use JavaSCript CONSE?......ociiiiiiiiiiiiiii e 21
JAVASCIIPL OPETALOTS ...ttt e e e r e e ereennees 22
JavaSCIIPt ASSIZNMENTeiiviiiiiiii i 22
JAVASCIIPE AQAITION ...t 22
JavaScript MUIIPIICAtIONvviiiiiiicec e 23
Types of JavaScript OPETAtorsSccviiiiiiiiiiiie i 23
JavaScript Arithmetic OPEratorscoveivieiieiieeie e 23
JavaScript AssIZNMENt OPETALOTSc..iiviiiiiiiiiiiiieri e 24
JavaScript CompariSON OPETALOTS.ueivierieerireereeseieee e e sre e eareeseeaneens 24
JavaScript Logical OPeratorsS..........ccciiieiiiiiiiiiiei e 25

JavaScript TerNary OPETAtOTSciiueiiririeiiiie st et et e et b et sb e srbe e nab e e s nbeee s e 26

JavaScript Nullish Coalescing Operator (77)cccveoviieeiieiiiieseese e 26
JavaScript Optional Chaining OPerator (7.)....cueeiveiiiiieiiiie it 26
JaVASCIIPE DAta TYPC .ouveieieiiieiiiie e 26
JAVASCIIPE STTIIES. ..ttt b et e et b e sb e e 28
QUOtES INSIAE QUOLESveiiiiiiiiie et e e e e s e e e e s e e e e s saba e e e e ssrreeeeanaeeeeesnnees 29
TEMPIALE SEEINES ..viviieiiiieeee bbbt 29
JavaScript String MEthOdSc.vviiiiiiiiie e 29
SHrNG LENGEN ..o s 29
Extracting String Parts ..o 30
JavaSCrIPt STING SHCE() c.vveveeieiiiieiiieie et 30
Converting to Upper and LOWET CaSEcciviiriieriiiiiieiiieiiie e 31
JavaScript SIrING CONCAL() .vvvuvreiueeiiieiiie ittt e e r e sreeanne e 31
JAVASCIIPt STING MU) vevveiieiiiitieie e n e 32
JavaScript SN TEPEAL() ..veruveerueeiiieiie i ri ettt e e anne e 32
Replacing String CONTENT........c.oiviiiiiiiiieiiee e 32
JavaScript String ReplaceAll()oovvvviiiiiiii 33
Converting a String t0 AN ATTAYcoovverreeireerreeiee et e s e e nnee s 33
JavaScript StrNG SPIE().eveeiviiiiiieiiii e 33
JavaScript String Search ... 34
JavaScript String INAEXOT()ooveiiiiii 34
JavaScript String SEATCR() ..vviviiiiiiiiiiie e 34
JavaScript String MatCh().....ccoooeiiiii e 34
JavaScript String INCIUAES() ..vovvivvveiiiiiiiieii e 34
JavaScript String StartSWIth()cocvveriiiiiee e 35
JavaScript String endsWith()cooiiiiiiiiii 35
JavaScript TemPlate StrNESoooviiieiiiie i 35
BACK-TICS SYNTAX ..eeuteiiirieiiiiii ettt n e nne e nrneene e 35
INEEIPOIATION ... 35
JavaScript if, €1se, and €ISE 1f.......oouiiiiiii i 36
Conditional StAtEMENESvveriiiiiiieii s 36

B ST T A P21 0<) 00 (=) L 36

The €IS StAtIMENTc.viiiiiiieiiie bbb 36
The else if Statement.........ccovvviiiiiii 37
JavaScript SWItCh StateMENt.........cccviiiiiiii i 37
JAVASCIIPE FOT LOOP ...ttt 40
Different Kinds 0f LOOPSvviiiiiiiiiiiiiiie sttt 40
TRE FOT LLOOD 1ttt bbbt 40
JavaSCriPt WHIle LOOD . .uiiiiiiiiiiiiiiie e 41
The DO WHILe LOOD ..ttt 42
JavaScript Break and CONtINUE.........cccuiiiiiiiiiiieiie e ene e 42
JAVASCIIPE FUNCLIONS ...ttt n e 43
JavaScript ATTOW FUNCHIONooiuiiiiiiiii i 44
Expense Tracker App (Practical 1)ccvviiiiiiiiiiiiii i 46
JAVASCIIPE EVENLS ...ttt 49
Common HTML EVENES.......ccciiiiiiiiiiiiiii i 50
JavaScript HTML DOM EVENtLIStENETccuvvviiieiiiieiieii e 50
Expense Tracker App (Practical IT)........ccooveiiiiiiiiiiiiii e 51
JAVASCIIPE ODJECTS ...t nnes 57
ODJECE PTOPEITIESc.viiviiiiiiitietiiiee e 57
ODBJECt MEhOMS ...t 57
AccesSING ODJECt PIOPETTIESc.vveiriiieiiirieiee it 58
JavaScript Object Methodsccoiiiiiiiiii 58
JavaScript ObJECt PTrOPEILIEScciviiieiiiieie e 59
AddINg NEW PIOPEITIEScciviiiiiiiiiiiiii i 59
Deleting PrOPEITIES. .. .ccuviiieiiieieiiie ittt ene e 60
INESEEA ODJECLS ...ttt bbbt r et e e 60
JavaScript Object Methodscoiiiiiiiiii 61
Using JavaScript MEthodSccviiiiiiiiiie s 61
JavaScript Display ODJECTSoiviiiiiiiiiiie e 62
Displaying ODJECt PIOPEITIEScciuviiieiiiiieiieiie et 62
Displaying Properties in @ LOODcccciiiiiiiiiiiiiiciii e 63

USING ODJECEVATUES() 1uvvveiuvrieiiiieiiiie i ettt ste et e s stb e nbb e e s sbb e e nnb e e s nsne e e e 63

USING JSONLSEINZIEY() vvvveriiieiiieiti e 64
JAVASCTIPE ATTAYS 1tveiiiiiiiesitieesitee sttt sttt e st e st e et e e e be e e kbt e e bb e e et e e e anbe e e ss b e e e sn b e e e sabeeenbbeeebneeans 65
WY USE ATTAYS? ...ttt b bbbt b e bt b n e 65
Accessing AITay EICMENTSc.viiiiiiiiiiieiic e 66
Changing an Array EICMENT........cccviiiiiiiiiie i 66
Converting an AITay t0 @ SEINEZceiiiiiiieiiiee e 66
BTSN (S 1T 1 g 0 1 o PRSPPI 67
Looping ATTay EICMENLSc..eeviiiiiiiiiiiiesii et 67
Adding Array EICMENTS.cocuiiiiiiiiiiie it 68
The Difference Between Arrays and ODJECES.........covviviriiiiiiieiieieeese s 68
When to Use Arrays. When to Use ObJECtS.coiiviiiiiiiiiiiiiiiiiei e 68
JavaScript Array Methods........coooiiiiiiiiiii 68
JAVASCIIPE ATTAY Q() +eevveveeieeeeeieeste ettt b et r e nn e nn e 68
JAVASCIIPE ATTAY JOTN() -reeteriiiieiiieiteestie ettt ettt e e e sae e s sn e e sbe e e et e sneeanbeesbeeanneens 69
JAVASCIIPE ATTAY POP() -vevvereenririeeiteere sttt b e r e n e 69
JavaScript Array PUSI().c.eoiiciiiieii i 69
JavaScript Array Shift(()cooeoiee 70
JavaScript Array unshift() ..o 70
JavaScript Array SPIICE(). .oivveriiiiiiiiii i 70
Using splice() to Remove EIements..........cccooviiiiiiiiiiciciceeeceere s 71
JavaSCriPt ATTAY SHCE() .evveivieiiiiiiiieie i 71
JavaScript Array S€archi........coooiiiiiii 72
JavaScript Array INAeXOT() ..ooviiiiiiiiiiii e 72
JavaScript Array INCIUAES()ooiveiiieiiii e 72
JavaScript Array fINA(). ..coooieiiiii 72
JavaScript Array findINdeX()....oooveiiiiiiiiii 73
JavaSCIIPt SOTTING ATTAYS ..eoiuviiiieieieiee et eneen 73
SOTHING AN ATTAY ...ttt 73
REVEISING QN ATTAY ...eiiiiiiiiiii ettt neenreeane e 74
JavaScript Array toSorted() Method ... 74

JavaScript Array toReversed() Method..........cccviiiiiiiiiiiiii e 74

JavaScript Array TEETATIONcoviiiiiiiciiie e 74
JavaScript Array fOrEaCh() ..voivviiiiiiiiiii i 74
Expense Tracker App (Practical 3)ccoiiiiiiiiiiiiicie e 75
JAVASCIIPE ATTAY MAP() +evverienriiiieieee sttt b e e et b e nbe e nn e 92
JavaSCTIPt ATTAY TIIEET() vovivveeiiiieiiiie it nnb e nes 92
JavaScript Array SPread (L) oo 92
JAVASCTIPE IMLAPS 1ttt ettt bt s bt e st e e st e et e e e e nnn e 93
HOW t0 Create @ IMAPooiiiiiieiie et 93
The new Map() MEthOdcocviiiiiii i 93
The SEt() MO ... oo e 93
The GEt(() MEthodcc.eieiiiec e ne e 94
A S /<SPS RPR 94
Y o X (<) 1 T (TR TP PP PR PUP PRSP 94
A o (T2 () TSR RPR 95
IMAP.NAS() 1t b e r e 95
MaP.FOTEACR() .t 95
A BT IR Lo (L () TP PR PRSPPI 96
IMAP.KEYS() -eereiuriitie ittt 97
IMLAD.VAITES() c-veeeeeeiee sttt ettt ettt ekttt et b et e he e e e e b et bt e nnr e e b e e reeenre e 97
RETEIENICES ...t 98
Table of Figures
Figure 1: Adding JavaScript t0 @ WEb PAZEccvvvviiiiiiiiiiciiii e 14
Figure 2: Adding JavaScript in Head Tagccoooiiiiiiiiie e 14
Figure 3: Adding JavaScript in Body Tag.........cccoceiiiiiiiiiiiiic e 15
Figure 4: Adding JavaScript (EXternal)cccooiiiiiiiiiiic e 16
Figure 5: Adding several SCript f1lESceoiiiiiiiiiiiic e 16
Figure 6: JS INNerHTML.......cooiiiiiii e 17
Figure 7: dOCUMENT.WIILE() «..vveiveeireesieieiiesiee et e e nnees 17
Figure 8: WINAOW.ALETT()....veivieiiieiiieiii ettt et e e eneas 17
Figure 9: CONSOLELOZ() .vverviirieiiiiiieii e 17

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:

JS Variable Declarationcccvvviiiiiiiiiiii i 18
JS Variable Declaration I1...........cccoooiiiiiiiiiiiii e 18
JS Variable Declaration Iccooiiiiiiiiiiiiii 18
JS Variable Declaration IV ... 18
JS BIOCK SCOPE ...ttt 20
JS GlODAl SCOPEL....eiiiiiiiiiiie it 20
JS Tet DECIATAtION.ccviiiiiiiiiiieic e 20
JS var Declarationcoceiiiiiiiiiii i 21
TS CONStaciiiiii 21
JS const declaring an ATTAYcccueiieiiiieiieie e 22
JS const declaring an ODBJECEcuviiiiiiiiiiieiiii e 22
JS aSSIZNMENE OPETALOTeevieiiiiiieitiee sttt 22
JS addition OPETALOTciuviieieiii ettt 23
JS multiplication OPETALOTeeiiieiiiiiee e 23
JS Arithmetic OPETator........ccvveiiiiieriieiiiie st 24
JS AsSIZNMENt OPETALOLcoviiiiiiiiiiiiii s 24
JS ComPariSON OPETALOTSuveuviiureiierisieeste ettt nn e 24
JS CompariSOn OPEIALOTeeiuviiiieiiieiee it e e sne e 25
JS Concatenation OPEIator........cciueieiiiiieiiieiiee et 25
JS Logical Operators tableccooiiiiiiiiiiiciieie e 25
JS LogICal OPErator......ccuiiviiiiiiiiie i 25
JS Ternary OPerator......c.cuiiiiiiiieiieii e 26
JS Nullish Coalescing Operator (77)oceiveiiiieiiiii e 26
JS Optional Chaining OPeratorcccovveiiiiiiiieiieie e 26
NUMDET DAt TYPE ..o 27
SHrINEG DAt TYPE...vviueiiiiiiticiiii e 27
Bo00lean Data TYPEccoviiriiiiiiie et 27
ODBJECt DAta TYPE...viieeiiiiiiiiie it 27
Array Object Data TYPE......coiiiiiiiiiiiiiic s 28
Date Object Data TYPEoooveiiiiiieieceiee e 28
Concept 0 Datad TYPEeeiviiiiiieiiii i 28
Adding a number and @ SIHNG........ccovirieiiiieiii e 28
TS SHIINES .. 28
QUOLES INSIAC QUOTES.......veiuriiiiiiiieiiieie sttt 29
JS Template SIrINESceoiveeiiieieeeee e 29
JS Template strings With QUOTESccoviiiiiiiiiiii e 29
IS String Lengthoovviiii 30
TS SHING SHCE() +eeveeeniieiiieetie ettt 30
JS String slice() omitting the second parameter............cocevveeieiriierieniiese e 31
JS String slice() Negative Parameter.........ccvevvereieierrrienee e 31

Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:
Figure 85:
Figure 86:
Figure 87:
Figure 88:
Figure 89:

JS String tOUPPETCASE() vvveivrieiirieiiiieiiiie st e et in e e 31
JS String tOLOWETCASE() «.vveveeuriiiieiiieiisiiesie e 31
JS SHIING CONCAL() +rvvrvriiiiiie ittt nnr e e br e e 32
JS SHING TIM() 1ovvie it 32
JS SHNE TEPEAL() 1t 32
JS SHIING TEPIACE() vorvvvreiiiie ittt 32
JS String 18Plac@ALL() .eouveveiiieiiieee e 33
JS String Split() ON COMMAS.....cccuviiiiiieiiiie et 33
JS String SPIit() ON SPACES ...uvvveiiiieiiiie ittt 33
JS String SPIt() ON PIPE ..ovvvivieiriiiieitieii et 33
JS String search INAeXOF() ..vvvviiiiiiii 34
JS SHNE SCATCR()it 34
JS String MatCh() ...eeoeeeieeie e 34
JS String INCIUAES() «.vveeieeiiieeee e 34
JS Strings StartsWith(()coeeieeiiiieiice e 35
JS Strings endSWIth() .oouveiiieiiiee e 35
BaCK-TiCS SYNEAX ... eetiiiiiiiiiieie ettt 35
JS Template String INterpolationcceeiiiiiiiiiiiiie e 36
JS I STALEMCNL ... 36
JS €1S€ STAtEMENL.....ciiiiiiiiie it 37
JS €lS€ 1 STALEMCNL ... 37
JS SWItCh STAtEMENTeeiiiiiiiiie s 38
JS switch statement (common code blOck)cccocvviiiiiiiiiiiii 39
TS 0T 100D 1t 40
TS 0T L0OP TL.ceee e 41
JS WHILE LOOD .. 41
JS do WhHILe 100D 1 42
JS break StatemMENtcciuviiiiiiii e 42
JS CONtINUE STALEMENL ..o 43
IS fUNCHION SYNTAX ..o 43
JavaScript FUNCHIONccoiiiiiiiiic e 44
JavaScript Arrow FUNCHIONooiiiiiiiici e 44
Before Arrow FUNCHON.oiiiiiiieiii e 45
With ATTOW FUNCHION......cuiiiiiiiie e 45
JS Arrow Function return value by default ... 45
JS Arrow Function with parameterscceoiiieiiiiiiieiie e 45
JS Arrow function without parentheses..........cccocvviiriiienieiies e 46
CIEAtING SCTIPL.JS vveurteuriitieriisii ittt sttt sb et e e 46
adding id attribute to welcome address div.........ccocvveiiiiiiiiieiii e 46
Add the SCTIPt.s IINK......oeiiiiiiieie e 47

Figure 90:
Figure 91:
Figure 92:
Figure 93:
Figure 94:
Figure 95:
Figure 96:
Figure 97:
Figure 98:
Figure 99:

Figure 100:
Figure 101:
Figure 102:
Figure 103:
Figure 104:
Figure 105:
Figure 106:
Figure 107:
Figure 108:
Figure 109:
Figure 110:
Figure 111:
Figure 112:
Figure 113:
Figure 114:
Figure 115:
Figure 116:
Figure 117:
Figure 118:
Figure 119:
Figure 120:
Figure 121:
Figure 122:
Figure 123:
Figure 124:
Figure 125:
Figure 126:
Figure 127:
Figure 128:
Figure 129:

LULS (S0 00 T\ (O TR TTPR 47
WELCOME MESSAZEcuveeriiieitieiee sttt nn e 48
Welcome Message 1S NOW AYNAMIC......civuiiiiiieiiieeiiiee e siee e sree e sine e ninee s 48
JavaScript ONCICK @VENT.......cviiiiii i 49
displayDate fUNCHION.cciiiiiiiiiii e 49
JavaScript addEventLiSteNner()cocvvieiiiiiiiiieiiie i 51
JavaScript addEventListener() IL........cccoooiiiiiiiiiiiice e 51
creating dark MOAEcvviiiiiiiiii 51
Creating dark Mode TL........oouiiiiiiiiii s 52
Creating dark mode TIL.........cooiiiiiiiiiici e 53
Creating dark Mode TV ... 53
hiding the HZHt 1CON.......cc.iiiiiici s 53
Light mode 1S hiddencoooiiiiiiiiiii e 54
Dark Mode Styling function...........coceiiiiiiiiiiiii 55
dark MOAE CLASS ...t 56
LIt MO ...t 56
DArk MOd@.......eeeiiiieiiei s 56
TS ODBJECL. ..ttt 58
0bJeCtNAME. PIOPETEYINAINC. ... ettt 58
objectName|['propertyNAME']coiveriiriiieiire e 58
JS Object Methods.......c.oiviiiiiiiiiii 59
Adding New property t0 an ODJECT........cccviiiiririiiiiiiieiee e 59
Deleting property from an ObJECt..........ccvvvviiiiiiiiiiiiiiiei e 60
INESEEA ODBJECT ..t 61
JS Object MethOds.cooiiiiiiiie s 61
USINg JS MEthOdS ..o 62
Displaying ODbjJect PrOPEITIES.......coviiiieiriiiiieiei e 62
Displaying Properties using LOOPccceiiiiiiiiiiiiiiicic e 63
USING OBJECE.VAIUES() c.vvvveiiiiiiiiieiiieic et 64
USING JSONLSIINZITY() eeeveeiirieieeieieee e e 65
TS AITAYS v 65
JS Arrays List Of COUNIIIES ...oocvviiiiiiiiiiieiie e 65
JS accessing array €lementsc.oocveiiiiiiieiiiii e 66
Changing an Array Elementccoooiiiiiiiiiiiiicie e 66
Converting an Array t0 SNcocveiiieiierreeee e 67
JS array length Propertyccciiiiiiiiiiiii e 67
Loop through an ATTAYcceeieiiiieie e 67
Loop through an Array using forEach()cccooiiiiiiiiii, 68
IS array PUSH() eveeeice e 68
JS array at() Methodcooieiiii 69

Figure 130: JS array join() MEthOdcoovviiiiiiiiiiiccie e 69
Figure 131: JS array pop() MEthOdc.coieiiiiiiiiic e 69
Figure 132: JS array push() Mmethod.........cccooiiiiiiiiiiiii e 70
Figure 133: JS array shift() methodcccoiiiiiiiiiii e 70
Figure 134: JS array unshift() method ... 70
Figure 135: JS array splice() Methodooiiiiiiiiiiiiiii e 71
Figure 136: JS array splice() method to remove elements.cccecvreeiiiiinienici e 71
Figure 137: JS ArTay SHICE() eeervveeiiiieiiiiie ittt st siee sttt sttt sttt e e e s nnneeans 72
Figure 138: JS array indexOf() Methodcccooiiiiiiiiiiiiii e 72
Figure 139: JS array includes() methodccooiiiiiiiiiiiiicc e 72
Figure 140: JS array find() method..........couiiiiiiiiiiii e 73
Figure 141: JS array findIndex() method...........cooueiiiiiiieiiice e 73
Figure 142: JS array sort() methodccoiiiiiiiiiiii 73
Figure 143: JS array reverse() method..........cocviiiiiiiiiiiiii 74
Figure 144: JS array forEach() method..........ccoiiiiiiiiiiiii e 75
Figure 145: Adding id to form input DOXES........ccvivieiiiiiiiiieiie e 75
Figure 146: keyup EVEntLIStENeTc.ciiviiiiiiiiciieie e 76
Figure 147: Working perfectly ... 76
Figure 148: Storing the variables ..o 76
Figure 149: Printing the variables..........ccooiiiiiiiiiiii e 77
Figure 150: Printing the variables IL ... 77
Figure 151: Default eXpenses data ..o 78
Figure 152: Hardcoded data............coiiiiiiiiiiiic e 79
Figure 153: NeW diV Created.......cooiviiiiiiiiiiiii e 80
Figure 154: Ttems TE€MOVEAeoiiriiiiiiiiciieee e 80
Figure 155: Loop and display the expenses datacoccoviiviiiiiiiiiiciic e 80
Figure 156: The items are diSplayed.........ccccviiiiiiiiiiiie s 81
Figure 157: Sum the total EXPensecccoeiiiiiiiiiiiii i 81
Figure 158: ShOWING total......ccviiiiiiiiiiiiici 82
Figure 159: adding new item to the expense data............cccoerviiiiiiieiic i 82
Figure 160: the item has been added...........cccoviiiiiiiiiiii 83
Figure 161: Updated Script to render the Ul ..o 84
Figure 162: New item added and the UI have been updated.............cccooviiiiiiiiniciiiiic, 85
Figure 163: Updated COdeoviiiiiiiiiiiieii e 88
Figure 164: Now the data are StOTedcoiiviiiiiiieiiee e 89
Figure 165: Add delete.......ccviiiiiiiiiiiiic 91
Figure 166: Complete Expense Tracker APoooovvoiieiiiiiiiiieie e 91
Figure 167 JS array map() Method..........cccoiiiiiiiiiiiii e 92
Figure 168: JS array filter() method............cooiiiiiii e 92
Figure 169: JS array SPread (..) .veeeei oo 93

11

Figure 170:
Figure 171:
Figure 172:
Figure 173:
Figure 174:
Figure 175:
Figure 176:
Figure 177:
Figure 178:
Figure 179:
Figure 180:

JS NEW MaP() CONSITUCTOT. ... vviiiiiie ittt nine e 93
JS map set() MEthOdccviiiiiiii 94
JS map get() MEthOd......cuiiiiiiii 94
JS MAP SIZE PrOPEILY...vviiiiii ittt e et rre e 94
JS map delete() MEthodcccoiiiiiiiiii 95
JS map clear() Method.........cccooiiiiiiii 95
JS map has() MEthodcooiviiiiii 95
JS Map forEach() method..........ccccoiiiiiiiiiii e 96
JS Map entries() MEthOd.........coiviiiiiiiiiii e 96
JS array keys() Methodccooiiiiiiiiii 97
JS array values() MEthOdcoovviiiiiiiiiiii 98

12

Introduction to JavaScript
JavaScript is the world’s most popular programming language. JavaScript is the programming

language of the Web. JavaScript is easy to learn.

JavaScript and Java are completely different languages, both in concept and design. JavaScript is
one of the 3 languages all web developers must learn:

e HTML to define the content of web pages.
e CSS to specify the layout of web pages.
e JavaScript to program the behavior of web pages.

JavaScript can be used to change HTML content.

e One of many JavaScript HTML methods is getElementByld().

JavaScript can change HTML attributes.
JavaScript can change HTML Styles (CSS)

e document.getElementByld(“header”).style.fontSize = “15px™;

JavaScript can hide HTML Elements.

e document.getElementByld(“header”).style.display = “none”;

JavaScript can show HTML Elements.

e document.getElementBylId(“header”).style.display = “block™;

Foot Note:

e You don’t have to get or download JavaScript.
e JavaScript is already running in your browser on your computer, on your tablet, and on
your smart-phone. Free to use for everyone.

e JavaScript accepts both double and single quotes.

Adding JavaScript to a web page

JavaScript can be added to web page using internal (inside the web page) or external (outside the
web page).

13

Internal

JavaScript code is nestled between <script> and </script> tag as shown below:

document.getElementById("header').innerHTML = "My Apps’;

Figure 1: Adding JavaScript to a web page

Scripts can be placed in the <body>, or in the <head> section of an HTML page, or in both.
lang="en"

charset="UTF-8"
name="viewport” content="width=device-width, initial-scale=1.0"
My Apps

changeTitle() {
document.getElementById("header').innerHTML

Adding JavaScript in Head Tag

id="header">My Collections
type="button” onclick="changeTitle()">Change Title

Figure 2: Adding JavaScript in Head Tag

Note: Placing scripts at the bottom of the <body> element improves the display speed, because

script interpretation slows down the display.

14

lang="en"

charset="UTF-8"
name="viewport” content="width=device-width, initial-scale=1.e
My Apps

Adding JavaScript in Body Tag

id="header”>My Collections
type="button” onclick="changeTitle()">Change Title

changeTitle() {
document.getElementById("header').innerHTML = "My Apps';

Figure 3: Adding JavaScript in Body Tag
External
Scripts can also be placed in external files just like how you do CSS external styling. External
scripts are practical when the same code is used in many different web pages.
JavaScript files have the file extension .js.
You can place an external script reference in <head> or <body> as you like.
The script will behave as if it was located exactly where the <script> tag is located.

To use an external script, put the name of the script file in the src (source) attribute of

a <script> tag as shown below:

15

lang="en

charset="UTF-8"
name="viewport"” content="width=device-width, initial-scale
My Apps

Adding JavaScript in Body Tag (External)

cader”>My Collections
n" onclick="changeTitle()">Change Title

1]

Figure 4: Adding JavaScript (External)
Placing scripts in external files has some advantages:

e [t separates HTML and code
e It makes HTML and JavaScript easier to read and maintain
e Cached JavaScript files can speed up page loads

To add several script files to one page - use several script tags as shown below:
lang="en"
charset="UTF-8"

name="viewport” content="width=device-width, initial-scale=1.
My Apps

Adding JavaScript in Body Tag (External)

id="header”>My Collections
type="button” onclick="changeTitle()">Change Title

_m

Figure 5: Adding several script files

16

JavaScript Display Data

JavaScript can “display” data in different ways:

e Writing into an HTML element, using innerHTML.

e Writing into the HTML output using document.write().
e Writing into an alert box, using window.alert().

e Writing into the browser console, using console.log().

innerHTML

document.getElementById("header’).1innerHTML

Figure 6: JS innerHTML

document.write()

document.write(My Apps’);

Figure 7: document.write()

Note: Using document.write() after an HTML document is loaded, will delete all existing
HTML.

window.alert()

window.alert('My Apps');

Figure 8: window.alert()
Note: In JavaScript, the window object is the global scope object. This means that variables,
properties, and methods by default belong to the window object. This also means that specifying

the window keyword is optional:

console.log()

console.log("My Apps’)

Figure 9: console.log()

17

JavaScript Variables

Variables are Containers for Storing Data.
JavaScript Variables can be declared in 4 ways:

e Automatically

Figure 10: JS Variable Declaration

e Using var

Figure 11: JS Variable Declaration 11

e Using let

Figure 12: JS Variable Declaration 111

e Using const

Figure 13: JS Variable Declaration IV

18

When to Use var, let, or const?

1) Always declare variables

2) Always use const if the value should not be changed

3) Always use const if the type should not be changed (Arrays and Objects)
4) Only use let if you can’t use const

5) Only use var if you MUST support old browsers.

JavaScript Identifiers

All JavaScript variables must be identified with unique names.

These unique names are called identifiers.

Identifiers can be short names (like x and y) or more descriptive names (age, sum, total Volume).
The general rules for constructing names for variables (unique identifiers) are:

e Names can contain letters, digits, underscores, and dollar signs.

e Names must begin with a letter.

e Names can also begin with $ and _ (but we will not use it in this tutorial).
e Names are case sensitive (y and Y are different variables).

e Reserved words (like JavaScript keywords) cannot be used as names.

Note:

e The var keyword was used in all JavaScript code from 1995 to 2015.
e The let and const keywords were added to JavaScript in 2015.
e The var keyword should only be used in code written for older browsers.

JavaScript let

e The let keyword was introduced in ES6 (2015)

e Variables declared with let have Block Scope

e Variables declared with let must be Declared before use

e Variables declared with let cannot be Redeclared in the same scope

Block Scope

e Before ES6 (2015), JavaScript did not have Block Scope.

e JavaScript had Global Scope and Function Scope.

e ES6 introduced the two new JavaScript keywords: let and const.
e These two keywords provided Block Scope in JavaScript:

19

https://www.w3schools.com/js/js_es6.asp

console.log(x);

Figure 14: JS Block Scope
Global Scope

e Variables declared with the var always have Global Scope.
e Variables declared with the var keyword can NOT have block scope:
e Variables declared with var inside a { } block can be accessed from outside the block:

console.log(x);

Figure 15: JS Global Scope

Cannot be Redeclared

e Variables defined with let can not be redeclared.
¢ You can not accidentally redeclare a variable declared with let.

Figure 16: JS let Declaration

But variables defined with var can be redeclared:

20

Figure 17: JS var Declaration

Note:

e let and const have block scope.
e et and const cannot be redeclared.
e et and const must be declared before use.

JavaScript const

e The const keyword was introduced in ES6 (2015)
e Variables defined with const cannot be Redeclared
e Variables defined with const cannot be Reassigned
e Variables defined with const have Block Scope

Cannot be Reassigned

A variable defined with the const keyword cannot be reassigned:

salary = 100000;

salary = salary + 50000;

Figure 18: JS const

When to use JavaScript const?

Always declare a variable with const when you know that the value should not be changed.
Use const when you declare:

e Anew Array
e Anew Object

21

https://www.w3schools.com/js/js_es6.asp

e A new Function
e Anew RegExp

"Javascript'];

courses = {
name: "HTML
duration:
cost:

Figure 20: JS const declaring an Object

JavaScript Operators
JavaScript operators are used to perform different types of mathematical and logical
computations.

Examples:

e The Assignment Operator = assigns values

e The Addition Operator + adds values

e The Multiplication Operator * multiplies values
e The Comparison Operator > compares values

JavaScript Assignment

The Assignment Operator (=) assigns a value to a variable:

salary = 150000;

Figure 21: JS assignment operator

JavaScript Addition
The Addition Operator (+) adds numbers:

22

salary = 150000;

allowance = 25000;

takeHome = salary + allowance;

Figure 22: JS addition operator

JavaScript Multiplication

The Multiplication Operator (*) multiplies numbers:

salary = 1500800 * 12,

Figure 23: JS multiplication operator

Types of JavaScript Operators

There are different types of JavaScript operators:

e Arithmetic Operators
e Assignment Operators
e Comparison Operators
e Logical Operators

e Ternary Operators

e Type Operators

JavaScript Arithmetic Operators

Arithmetic Operators are used to perform arithmetic on numbers:

Operator Description
+ Addition
- Subtraction
* Multiplication
oH Exponentiation
/ Division
% Modulus (Remainder)
++ Increment

23

- Decrement

salary = 150000;
allowance = 25000;
months = 12;

takeHome = (salary + allowance) * months;

Figure 24: JS Arithmetic Operator

JavaScript Assignment Operators

Assignment operators assign values to JavaScript variables.

The Addition Assignment Operator (+=) adds a value to a variable.

Figure 25: JS Assignment Operator

JavaScript Comparison Operators
Comparison operators are used in logical statements to determine equality or difference between

variables or values.

Operator Description

== Equal to

=== Equal value and equal type

| = Not Equal
== Not equal value and equal type
> Greater than
< Less than
> = Greater than or equal to
<= Less than or equal to
? Ternary operator

Figure 26: JS Comparison Operators

24

age = 18;

if(age < 18){
console.log('Too young

&
L

to drive');

Figure 27: JS Comparison Operator

Note:

e When used on strings, the + operator is called the concatenation operator.

Figure 28: JS Concatenation Operator

JavaScript Logical Operators

Logical operators are used to determine the logic between variables or values.

Operator Description
&& And
[Or
! Not Equal

Figure 29: JS Logical Operators table

age = 1

if(age < 18 && age »>= 10){
console.log('Not eligible to driv

Figure 30: JS Logical Operator

25

JavaScript Ternary Operators
JavaScript also contains a conditional operator that assigns a value to a variable based on some

condition.

ageToDrive = 18;

(ageToDrive »= 18) ? 'Eligible to drive® : 'Not Eligible to drive

Figure 31: JS Ternary Operator

JavaScript Nullish Coalescing Operator (??)

The ?? operator returns the first argument if it is not nullish (null or undefined).

nameFetch = H
defaultName = "Piccolo’;

studentName = nameFetch ?? defaultName;

Figure 32: JS Nullish Coalescing Operator (??)
Note: This is useful when fetching data from an API endpoint.

JavaScript Optional Chaining Operator (?.)

The ?. operator returns undefined if an object is undefined or null (instead of throwing an error).

courses = {
firstCohort:
secondCohort:

console.log(courses?.thirdCohort);

Figure 33: JS Optional Chaining Operator

JavaScript Data Type

In programming, data type is an important concept.
To be able to operate on variables, it is important to know something about the type.

26

JavaScript has 8 Datatypes

e String

e Number

e Bigint

e Boolean

e Undefined
e Null

e Symbol

e Object

salary = 50000;

allowance = 15000;

Figure 34: Number Data Type

firstName = 'Team’;
lastname = "Piccolo’;

Figure 35: String Data Type

Figure 36: Boolean Data Type

tutor = {

firstName: ‘Team’,
lastName: 'Piccolo’

Figure 37: Object Data Type

27

'TailwWindcss'];

Figure 39: Date Object Data Type

Without data types, a computer cannot safely execute the statement below:

"Course Fee " + 150000;

Figure 40: Concept of Data Type

Note: When adding a number and a string, JavaScript will treat the number as a string. The
statement above will be executed as shown below:

'w [T Elements Console Sources Network Perfor

I @ tpvy © Y Filter

Course Fee 158000

Figure 41: Adding a number and a string

JavaScript Strings

Strings are for storing text.

Strings are written with quotes.

message

msg = “"Welcome to JavaScript Course";

Figure 42: JS Strings

28

Note:

e Strings created with single or double quotes work the same.
e There is no difference between the two.

Quotes Inside Quotes

You can use quotes inside a string, as long as they don’t match the quotes surrounding the string:

answerl = "It's alright”;

answer2 = "My name is 'Piccolo’";
answer3 = 'His name is "Malamiromba™';

Figure 43: Quotes inside quotes

Template Strings
Templates were introduced with ES6 (JavaScript 2016).

Templates are strings enclosed in backticks as shown below:

message = Welcome to Javascript Course ;

Figure 44: JS Template Strings

Templates allow single and double quotes inside a string as shown below:

message = MWelcome 'Piccolo’ to our 3

Figure 45: JS Template strings with quotes
JavaScript String Methods

String Length
To find the length of a string, use the built-in length property as shown below:

29

message = MWelcome 'Piccolo’ to our 3

messagelength = message.length;
console.log(messagelLength);

Figure 46: JS String Length

Extracting String Parts

There are 3 methods for extracting a part of a string:

o slice(start, end)

o substring(start, end)

e substr(start, length)
JavaScript String slice()
slice () extracts a part of a string and returns the extracted part in a new string.
The method takes 2 parameters: start position, and end position (end not included)

Note:

e JavaScript counts positions from zero.
e First position is 0.
e Second position is 1

message = MWelcome "Piccolo’ to our JavaScript Course ;

extractedMessage = message.slice(9, 16)
console.log(extractedMessage);

Figure 47: JS String slice()

30

message = Welcome 'Piccolo’ to our JavaScript Course’;
extractedMessage = message.slice(9)
console. log(extractedMessage);

Figure 48: JS String slice() omitting the second parameter

message = Welcome "Piccolo’ to our JavaScript Course ;
extractedMessage = message.slice(-17)
console.log(extractedMessage);

Figure 49: JS String slice(') negative parameter
Converting to Upper and Lower Case

A string is converted to upper case with toUpperCase():

A string is converted to lower case with toLowerCase():

message = Welcome *Piccolo’ to our JavaScript Course
messageToUpper = message.toUpperCase();
console.log(messageToUpper);

Figure 50: JS String toUpperCase()

message = Welcome 'Piccolo’ to our JavaScript Course;

messageToLower = message.toLowerCase();
console. log(messageToLower);

Figure 51: JS String toLowerCase()

JavaScript String concat()

concat() joins two or more strings:

31

message = Welcome

course = to our JavaScript Course ;
msgConc = message.concat(’ ', course);
console.log(msgConc);

Figure 52: JS String concat()

JavaScript String trim()

The trim() method removes whitespace from both sides of a string.

message = Welcome 'Piccolo’ to our JavaSc
msgTrim = message.trim();
console.log(msgTrim);

Figure 53: JS String trim()
JavaScript String repeat()

The repeat() method returns a string with a number of copies of a string.
The repeat() method returns a new string.

The repeat() method does not change the original string.

message = Welcome *Piccolo’ to our JavaScript Course
msgRepeat = message.repeat(100);
console.log(msgRepeat);

Figure 54: JS String repeat()
Replacing String Content

The replace() method replaces a specified value with another value in a string

message = Welcome 'Piccolo’ to our 3

msghNew = message.replace(' Picco
console.log(msgNew);

Figure 55: JS String replace()

32

Note:

e By default, the replace() method is case sensitive. Writing PICCOLO (with upper-case)
will not work.

JavaScript String ReplaceAll()

In 2021, JavaScript introduced the string method replacen1i():

message = Welcome 'Piccolo’

msgNew = message.replaceAll('Pic
console.log(msgNew);

Figure 56: JS String replaceAll()
Converting a String to an Array

If you want to work with a string as an array, you can convert it to an array.

JavaScript String split()

A string can be converted to an array with the split() method.

message = W P (
msgSplit = message.split(',');
console.log(msgsplit);

message = le e 'Piccolo Je £ sel Piccolo

msgsplit = message.split(’
console.log({msgsplit);

message = Welcome '"Picc
msgSplit = message.split('|");
console.log(msgsplit);

Figure 59: JS String split() on pipe

33

JavaScript String Search

JavaScript String indexOf()

The indexOf{() method returns the index (position) of the first occurrence of a string in a string,
or it returns -1 if the string is not found:

message = W e "Piccolo’ our Javascript Course! Picc

msgIndexOf = message.indexOf(Malamiromba™);
console.log(msgIndexof);

Figure 60: JS String search indexOf()

JavaScript String search()

The search() method searches a string for a string (or a regular expression) and returns the
position of the match:

message =)
msgSearch = message.search(P1
console.log(msgSearch);

Figure 61: JS String search()

JavaScript String match()

The match() method returns an array containing the results of matching a string against a string
(or a regular expression).

message = U me ‘P
msgMatch = message.match(”
console.log(msgMatch);

Figure 62: JS String match()

JavaScript String includes()

The includes() method returns true if a string contains a specified value. Otherwise, it
returns false.

message = |

msgIncludes = message.includes(”
console.log(msgIncludes);

Figure 63: JS String includes()

34

JavaScript String startsWith()

The startsWith() method returns true if a string begins with a specified value.

Otherwise, it returns false:

message = Welcome 'Piccolo’ to our J

msgstartWith = message.startsWith("Piccc
console.log(msgStartwith);

Figure 64: JS Strings startsWith()
JavaScript String endsWith()

The endsWith() method returns true if a string ends with a specified value.

Otherwise, it returns false:

message = Welcome "Piccolo’ to our Ja
msgEndsWith = message.endsWith(yo
console.log(msgEndsWith);

Figure 65: JS Strings endsWith()
JavaScript Template Strings

Back-Tics Syntax

Template Strings use back-ticks (") rather than the quotes ("") to define a string as shown
below:

message = Welcome 'Piccolo’ to our JavaScript Coursel ;

Figure 66: Back-Tics Syntax

Interpolation

Template String provide an easy way to interpolate variables and expressions into strings.

The method is called string interpolation.

35

studentName = Piccolo ;

message = Welcome ${'Piccolo’} to our JavaScript Coursel;
console.log(message);

Figure 67: JS Template String Interpolation

JavaScript if, else, and else if

Conditional statements are used to perform different actions based on different conditions.

Conditional Statements

Very often when you write code, you want to perform different actions for different decisions.
You can use conditional statements in your code to do this.
In JavaScript we have the following conditional statements:

e Use if to specify a block of code to be executed, if a specified condition is true.
e Use else to specify a block of code to be executed, if the same condition is false.
e Use else if to specify a new condition to test, if the first condition is false.

e Use switch to specify many alternative blocks of code to be executed

The if Statement

Use the if statement to specify a block of JavaScript code to be executed if a condition is true.

Figure 68: JS if statement

The else Statement

Use the else statement to specify a block of code to be executed if the condition is false.

36

("Eligible to drive’)

"Not Eligible to drive

Figure 69: JS else statement

The else if Statement

Use the else if statement to specify a new condition if the first condition is false.

time = 3;
if(time < 12){
console.log(Good Morning™)
}else if(time >= 12 && time < 18){

console.log(Good afternoon™)
Yelsef
console.log(Good evening]

Figure 70: JS else if statement

JavaScript Switch Statement

The switch statement is used to perform different actions based on different conditions.

e The switch expression is evaluated once.

e The value of the expression is compared with the values of each case.
e Ifthere is a match, the associated block of code is executed.

e Ifthere is no match, the default code block is executed

37

Figure 71: JS switch statement

Note:
The break Keyword

e When JavaScript reaches a break keyword, it breaks out of the switch block.
e This will stop the execution inside the switch block.

38

e [t is not necessary to break the last case in a switch block. The block breaks (ends) there
anyway.

The default Keyword

e The default keyword specifies the code to run if there is no case match:

Common Code Blocks

Sometimes you will want different switch cases to use the same code. In the code snippet below;
case 1 to case 5 share the same code block, and 6 and 0 share another code block:

Date().getDay()) {

‘Monday "’ ;

(] T |_J l-—_' E |:j r__']'_':r." (] ;

'Sunday
console.log(

ey L e

default:
text = "Looking forward to the Weekend";

Figure 72: JS switch statement (common code block)

Note:
39

e Ifmultiple cases match a case value, the first case is selected.
e Ifno matching cases are found, the program continues to the default label.

If no default label is found, the program continues to the statement(s) after the switch.

JavaScript For Loop
Loops can execute a block of code a number of times.
Loops are handy, if you want to run the same code over and over again, each time with a
different value.
Different Kinds of Loops
JavaScript supports different kinds of loops:
e for - loops through a block of code a number of times

e while - loops through a block of code while a specified condition is true
e do/while - also loops through a block of code while a specified condition is true

The For Loop

The for statement creates a loop with 3 optional expressions:

printNumbers = '";
for (X = 0; X < 5; x++) {
printNumbers += ~The number is ${x}
7;

¥

console. log(printNumbers)

Figure 73: JS for loop

e Expression 1 sets a variable before the loop starts (let x = 0).

e Expression 2 defines the condition for the loop to run (x must be less than 5).

e Expression 3 increases a value (x++) each time the code block in the loop has been
executed.

e Expression 1 is used to initialize the variable(s) used in the loop (let x = 0).

e But, expression 1 is optional.

e You can omit expression 1 when your values are set before the loop starts:

e Expression 2 is used to evaluate the condition of the initial variable (x < 5).

e But, expression 2 is also optional.

40

e [fexpression 2 returns true, the loop will start over again. If it returns false, the loop will
end.

e Ifyou omit expression 2, you must provide a break inside the loop. Otherwise, the loop
will never end. This will crash your browser.

e Expression 3 increments the value of the initial variable (x++).

e But, expression 3 is also optional.

e Expression 3 can do anything like negative increment (x--), positive increment (x = x +
15), or anything else.

e Expression 3 can also be omitted (like when you increment your values inside the loop):

printNumbers H
for (X = 0; X <5;) {

printNumbers += "The number is $%${x}
X++;

h

console. log(printNumbers)

Figure 74: JS for loop 11

JavaScript While Loop

Loops can execute a block of code as long as a specified condition is true.

printNumbers =
X = 0;
while (x < 10) {

printNumbers += "The number is ${x}
";
X++;

¥

console.log(printNumbers)

Figure 75: JS while loop

Note:

e If you forget to increase the variable used in the condition, the loop will never end. This
will crash your browser.

41

The Do While Loop

The do while loop is a variant of the while loop. This loop will execute the code block once,
before checking if the condition is true, then it will repeat the loop as long as the condition is
true.

printNumbers =
X =

do{

o+ i

printNumbers += "The number is ${x}
";
X++;

twhile (x < 10);

console. log(printNumbers)

Figure 76: JS do while loop

Note:

e Do not forget to increase the variable used in the condition, otherwise the loop will never
end!

e while loop is much the same as a for loop, with statement 1 and statement 3 omitted.

JavaScript Break and Continue

The break statement “jumps out” of a loop.

The continue statement “jumps over” one iteration in the loop.

printNumbers
x =]
for (X =0 < 10; x++) {
ak; }

)3
if (x === 3) { brea
printNumbers += "The number is ${x}, ;

b

console. log(printNumbers)

Figure 77: JS break statement

42

Note:

¢ In the code snippet above, the break statement ends the loop (“breaks” the loop) when the
loop counter (x) is 3.

The Continue Statement

The continue statement breaks one iteration (in the loop), if a specified condition occurs, and
continues with the next iteration in the loop.

printNumbers =
X = E

for (X = @;
if (x === 3) { continue; }
printNumbers += The number is ${x},

X < 10; i++) {

b

console. log(printNumbers)

Figure 78: JS continue statement

JavaScript Functions

A JavaScript function is a block of code designed to perform a particular task.

A JavaScript function is executed when “something” invokes it (calls it).

name(parameter1, parameter2, parameter3) {

Figure 79: JS function syntax

e A JavaScript function is defined with the function keyword, followed by a name,
followed by parentheses ().

e Function names can contain letters, digits, underscores, and dollar signs (same rules as
variables).

e The parentheses may include parameter (argument) names separated by commas:
(parameterl, parameter?2, ...)

e The code to be executed, b]y the function, is placed inside curly brackets: { }

Note:

43

e Function parameters (arguments) are listed inside the parentheses () in the function
definition.

e Function arguments are the values received by the function when it is invoked.

¢ Inside the function, the arguments (the parameters) behave as local variables.

When JavaScript reaches a return statement, the function will stop executing.

If the function was invoked from a statement, JavaScript will “return” to execute the code after
the invoking statement.

Functions often compute a return value. The return value is “returned” back to the “caller”:

addNumbers(a, b) {

return a + b;

h

X = addNumbers(4, 3);

Figure 80: JavaScript Function

JavaScript Arrow Function

Arrow functions were introduced in ES6.

Arrow functions allow us to write shorter function syntax:

addNumbers = (a, b) a + b;

console.log(addNumbers(4, 3))

Figure 81: JavaScript Arrow Function

44

courseName () {
return 'Web Development Course’;

console. log(courseName(

Figure 82: Before Arrow Function

courseName = () {
return 'Web Development Course’;

console.log(courseName());

Figure 83: With Arrow Function

It gets shorter! If the function has only one statement, and the statement returns a value, you can
remove the brackets and the return keyword as shown below:

courseName

console.log(courseName());

Figure 84: JS Arrow Function return value by default

If you have parameters, you pass them inside the parentheses as shown below:

courseName = (studentName) studentName +', Welcome to Web Development Course °;

console.log(courseName('Piccolo’)

Figure 85: JS Arrow Function with parameters

In fact, if you have only one parameter, you can skip the parentheses as well as shown below:

45

courseName = studentName studentName +°, W

console.log(courseName('Pic ¥);

Figure 86: JS Arrow function without parentheses

Expense Tracker App (Practical 1)

Step 1: Create a folder js and create a Javascript file called script.js as shown below:

File Edit Selection View Go Run Terminal Help

@ EXPLORER < J5 script.js X
v EXPENSE-TRACKER
> css New File...
> images
~ j5
J5 script.js
> app.html

> index.html

Figure 87: Creating script.js
Step 2: We will start working on the Good Morning, Mr. Piccolo section. We will use the date

object to make it dynamic based on the time the user opens the app to response with good

morning, good afternoon and good evening.

Step 3: in the app.html, add an id attribute with value of welcomeMsg to the div which contains

the welcome address message as shown below:

id="welcomeMsg"

Good Morning, Mr Piccolo

Figure 88: adding id attribute to welcome address div

46

Figure 89: Add the script.js link

Step 4: Create the welcomeMsg () function in the script.js file as shown below:

File Edit Selection View Go Run Terminal Help

J5 scriptjs X

js 2 IS scriptjs > ...
welcomeMsg = () {
hour = Date().getHours();

if(hour < 12) {
return "Gooc s
lse if(hour < 18) {
return "Good afternoon!™;

return "Good evening!";

alert(welcomeMsg());

Figure 90: welcomeMsg()

47

File Edit Selection View Go Run Terminal Help

il J5 scriptjs X

welcomeMsg = ()
et hour

t welcomeMsgDiv = document.getElementByTd(“we
welcomeMsgDiv.innerHTML = ~${welcomeMsg

Figure 91: Welcome Message

Expense Tracker App Good afternoon! Mr, Piccolo O

Expense List

Rent 200000
School Fees 150000
Groceries 50000
Total 400000

Figure 92: Welcome Message is now dynamic

48

JavaScript Events

HTML events are “things” that happen to HTML elements.

When JavaScript is used in HTML pages, JavaScript can “react” on these events.
An HTML event can be something the browser does, or something a user does.
Here are some examples of HTML events:

e An HTML web page has finished loading
e An HTML input field was changed
e An HTML button was clicked

Often, when events happen, you may want to do something.
JavaScript lets you execute code when events are detected.
HTML allows event handler attributes, with JavaScript code, to be added to HTML elements.

In the code snippet below, the JavaScript code changes the content of the element with id=
“header”.

JavaScript Events

id="header

onclick="displayDate()">The time is?

Figure 93: JavaScript onclick event

displayDate = () {

document.getElementById("header').innerHTML = Date()

Figure 94: displayDate function

49

Common HTML Events

Event Description

Onchange An HTML element has been changed
Onclick The user clicks an HTML element
Onmouseover The user moves the mouse over an HTML
element
Onmouseout The user moves the mouse away from an
HTML element
Onkeydown The user pushes a keyboard key
onload The browser has finished loading the page

JavaScript HTML DOM EventListener

The addEventListener() method attaches an event handler to the specified element.

The addEventListener() method attaches an event handler to an element without overwriting
existing event handlers.

You can add many event handlers to one element.

You can add many event handlers of the same type to one element, i.e. two “click” events.

You can add event listeners to any DOM object not only HTML elements. i.e. the window object.
The addEventListener() method makes it easier to control how the event reacts to bubbling.

When using the addEventListener() method, the JavaScript is separated from the HTML
markup, for better readability and allows you to add event listeners even when you do not control
the HTML markup.

You can easily remove an event listener by using the removeEventListener() method.

50

JavaScript EventlListener

id="header”>Click me to show the date

id="timeDiv"

header = document.getElementById(" he
timeDiv = document.getElementById(" timeD

displayDate = ()
timeDiv.innerHTML

|5

header.addEventListener(“click”, displayDate);

Figure 96: JavaScript addEventListener() II

Expense Tracker App (Practical II)
Step 1: Let’s work on the dark-mode. We will create a toggle; the user can toggle to switch from

light to dark mode.

Figure 97: creating dark mode

51

Step 2: Uncomment the icon and add the label as shown below:

i class="fa-solid fa-sun”

i class="fa-solid fa-circle-hal

Figure 98: Creating dark mode 11

Step 3: Now, we have three icons, the light, dark and logout icons.

Expense Tracker App Good afternoon! Mr, Piccolo 10 O [‘

Ex
N

.

Expense List

Rent 200000

School Fees 150000

Groceries 50000

Total 400000

Step 4: add id attributes to the light and dark icon as shown below:

52

Figure 99: Creating dark mode 111

lightModeIcon = document.getElementById("lightr
darkModeIcon = document.getElementById("darkModeIcon™);

Figure 100: Creating dark mode IV

Step 9: lets hide the light icon.

if(lightModeIcon){

lightModeIcon.style.display = "none’;

Figure 101: hiding the light icon

53

Expense Tracker App

Good afternoon! Mr, Piccolo

Expense List

Rent 200000
School Fees 150000
Groceries 50000
Total 400000

or

Step 10: Create a function for the dark mode styling as shown below:

Figure 102: Light mode is hidden

54

darkModeStyling = () {
navSection = document.getElementById("navSection™);
appArea = document.getElementById("appArea™);
lightModeIcon = document.getElementById(“lightModeIcon™);
darkModeIcon = document.getElementById("“darkModeIcon™);
logoutIcon = document.getElementById("logoutIcon™);

isDarkMode = document.body.classlList.toggle("dark-mode™);

if(navSection){
navSection.style.backgroundColor = isDarkMode ? "black" :

navsection.style.color = isDarkMode ? “"white" : "";

}
if (appArea){
appArea.style.backgroundColor = isDarkMode ? "black™ : "";

appArea.style.color = isDarkMode ? "white" : ™";

|
}
if(lightModeIcon){

lightModeIcon.style.display = isDarkMode ? "inline-block"” : "none”;

lightModeIcon.style.color = isDarkMode ? “"white™ : "";

if(darkModeIcon){
darkModeIcon.style.display = isDarkMode ? "none™ : "inline-block";

if(logoutIcon){
logoutIcon.style.color = isDarkMode ? "white™ : "";

darkModeIcon = document.getElementById("darkModeIcon™);

if(darkModeIcon){
darkModeIcon.addEventListener(“click”, darkModeStyling);

if(lightModeIcon){
lightModeIcon.addEventListener(“click”, darkMmodeStyling);

Figure 103: Dark Mode Styling function

.dark-mode{

color:

Figure 104: dark mode class

Expense Tracker App

Goad afternoon! Mr, Piccolo

Expense List

Rent 200000
School Fees 150000
Groceries 50000
Total 400000

O

Expense Tracker App

Figure 105: Light Mode

Good afternoon! Mr, Piccolo

Expense List

Rent 200000

School Fees 150000
Grocer 50000

Total 400000

Figure 106: Dark Mode

56

JavaScript Objects
If you Understand Objects, you Understand JavaScript.

In real life, objects are things like: houses, cars, people, animals, or any other subjects.

Here is a car object example:

Car Object Car Properties Car Methods
car.name = Honda car.start()
car.model = 2025 car.drive()
car.weight = 1850kg car.brake()
car.color = white car.stop()

Object Properties

A real-life car has properties like weight and color:
car.name = Honda, car.model = 2025, car.weight = 1850kg, car.color = white.
Car objects have the same properties, but the values differ from car to car.

Object Methods
A real-life car has methods like start and stop:

car.start(), car.drive(), car.brake(), car.stop().

Car objects have the same methods, but the methods are performed at different times.
Note:

Objects are variables too. But objects can contain many values.

The code below assigns many values (Honda, 2025, white) to an object named car:

57

car = {

type: 'Honda",

model :

color: 'white'

console.log(car);

Figure 107: JS Object
Accessing Object Properties

You can access object properties in two ways as shown below:

car = {

car =
type: 'H
model :

console.log(car['type']);

Figure 109: objectName[propertyName']
JavaScript Object Methods

Methods are actions that can be performed on objects.

58

Methods are function definitions stored as property values.

model :
color: "white',

carDescription : O {

return type + ' .color +' color';

console.log(car.carDescription());

Figure 110: JS Object Methods
Note: In the example above, this refers to the car object:
JavaScript Object Properties

An Object is an Unordered Collection of Properties

e Properties are the most important part of JavaScript objects.
e Properties can be changed, added, deleted, and some are read only.

Adding New Properties

You can add new properties to an existing object by simply giving it a value as shown below:

model:
color: "wh
carDescription

return .type +

console.log(car.price);

Figure 111: Adding New property to an Object

59

.model + ' with '+ .color +' color';

Deleting Properties
The delete keyword deletes a property from an object as shown below:

car = {
type: 'Honda
model:’ 5%,
color: "white"',
carDescription :

return .model + ' with '+ .color +' color';

car.model;

console.log(car);

Figure 112: Deleting property from an Object
Note:

e The delete keyword deletes both the value of the property and the property itself.
e After deletion, the property cannot be used before it is added back again.

Nested Objects

Property values in an object can be other objects.

60

phone:
courses:
o
rs
5

cour

1
]2

country: 'Nigeria’

console.log(customers.courses.coursel);

Figure 113: Nested Object

JavaScript Object Methods

Object methods are actions that can be performed on objects.

A method is a function definition stored as a property value

customer

name: '

phone:

courses: 1
coursel:
course2:
course3:

:]

country: ‘Nigeria’,

coursesRegistered:
return .courses.coursel +', ' .courses.course2 +', '+ .courses.course3;

console.log(customers. coursesRegistered());

Figure 114: JS Object Methods

Using JavaScript Methods

JavaScript have built-in methods. The code snippet below uses the JavaScript toLowerCase()
method to convert the coursesRegistered method to lowercase:

61

courses: {

coursel:

course2:

course3:
})

country:

"+ .C 5€5.C 1=y T .courses.course3).toLowerCase();

console.log(customers.coursesRegistered());

Figure 115: Using JS methods
JavaScript Display Objects
JavaScript objects can be displayed by:

o Displaying the Object Properties by name

o Displaying the Object Properties in a Loop

o Displaying the Object using Object.values()

e Displaying the Object using JSON.stringify()
Displaying Object Properties

The properties of an object can be displayed as a string:

cu

name: 'P

phone

courses
coursel: "HTML',
course?:
course3:

}s

country:

.courses.course2 +', '+ .courses.course3).toLowercase();

console. log('Welcome ‘+cus s.name +', You have re 1 "+customers.coursesRegistered(

Figure 116: Displaying Object Properties

62

Displaying Properties in a Loop

The properties of an object can be collected in a loop:

customers

name:

phone:

courses: {
coursel: "HTML',
course2: '
course3:

: »

country: 'Nige

for(course customers.course
courses += cu .courses|[course]

b
console.log('Welcome ‘+c name +°,

Figure 117: Displaying Properties using Loop

Using Object.values()

Object.values() creates an array from the property values:

63

‘+courses);

custome

name:

phone:

courses: {
coursel:
course2:
course3:

1
12

country:

myCustomers = Object.values{customers);

console.log{myCustomers);
Figure 118: Using Object.values()

Using JSON.stringify()
JavaScript objects can be converted to a string with JSON method JSON.stringify().

JSON.stringify() is included in JavaScript and supported in all major browsers.

64

phone:
courses:

country: 'Nigeria’

myCustomers = JSON.stringify(customers);

console.log(myCustomers);

Figure 119: Using JSON.stringify()

JavaScript Arrays

An array is a special variable, which can hold more than one value.

countries \ ia’, 'Ghana’, 'Niger', 'Benin Republic'];

Figure 120: JS arrays
Why Use Arrays?

If you have a list of items (a list of countries, for example), storing the countries in single
variables could look like this:

countryl
country2

country3 “Niger;
CCJI_JﬂtI"}rd "Benin F’-.i':"[:;-u blic™ H

Figure 121: JS Arrays List of countries

65

However, what if you want to loop through the countries and find a specific one? And what if
you had not 4 countries, but all the countries in the world?

The solution is an array!

An array can hold many values under a single name, and you can access the values by referring
to an index number.

Accessing Array Elements

You access an array element by referring to the index number:

Note:

e Array indexes start with 0.
e [0] is the first element. [1] is the second element.

countries = ['Nigeria‘', 'Ghana', 'Niger', 'Benin Republic'];

console.log(countries[2]);

Figure 122: JS accessing array elements

Changing an Array Element

The code snippet below changes the value of the third element in the countries array from
‘Niger’ to ‘Gabon’:

‘Ghana', 'Niger', 'Benin Republic'];

console.log{cmuntries[ﬁ]);

Figure 123: Changing an Array Element
Converting an Array to a String

The JavaScript method toString() converts an array to a string of (comma separated) array
values.

66

countries "Nigeria’ » 'Niger', 'Benin Republic'];
console.log(countries.tostring());

Figure 124: Converting an Array to String

The length Property

The length property of an array returns the length of an array (the number of array elements).

countries = ['Ni e » 'Niger', 'Benin Republic'];
console.log(countries.length);

Figure 125: JS array length property
Looping Array Elements

One way to loop through an array, is using a for loop:

countries 'Nigeria',
cLen = countries.length;
listofCountries = “";

for (i =0; i < clen; i++) {
listofCountries += "<1i>${ countries[i

h
listofCountries += " ";
console.log(listOfCountries);

Figure 126: Loop through an Array

You can also use the Array.forEach() function

67

countries = ~ia', 'Ghana', 'Niger', 'Benin Republic'];
listOofCountries Tcul>T;
countriesvisited = (country) {

listOofCountries += “${country}</1i>";
I3
countries.forkach(countriesvVisited);
listofCountries += ~’
console.log(listOfCountries);

Figure 127: Loop through an Array using forEach()

Adding Array Elements

The easiest way to add a new element to an array is using the push() method:

iger', 'Benin Republic'];

console.log(countries);

Figure 128: JS array push()

The Difference Between Arrays and Objects

e InJavaScript, arrays use numbered indexes.
e In JavaScript, objects use named indexes

When to Use Arrays. When to use Objects.

¢ You should use objects when you want the element names to be strings (text).
e You should use arrays when you want the element names to be numbers.

JavaScript Array Methods

JavaScript Array at()
ES2022 introduced the array method at():

68

countries = g » 'Niger', 'Benin Republic'];

country = countries.at(1)
console.log(country);

Figure 129: JS array at() method
JavaScript Array join()

The join() method also joins all array elements into a string.

It behaves just like toString(), but in addition you can specify the separator.

countries = ["Nigeria’, 'Ghana’, 'Niger', 'Benin Republic'];
countriesJoined = countries.join(', ");
console.log(countriesJoined);

Figure 130: JS array join() method
When you work with arrays, it is easy to remove elements and add new elements.
This is what popping and pushing is:
Popping items out of an array, or pushing items into an array.

JavaScript Array pop()

The pop() method removes the last element from an array:

countries Nigeria®, 'Ghana®, 'Niger', 'Benin Republic'];

countries.pop();
console.log(countries);

Figure 131: JS array pop() method
JavaScript Array push()

The push() method adds a new element to an array (at the end):

69

countries = ['Nigeric ‘Ghana®, 'Niger', 'Benin Republic'];

countries.push('Mali');
console.log(countries);

Figure 132: JS array push() method

JavaScript Array shift()

The shift() method removes the first array element and “shifts” all other elements to a lower
index.

countries = ['Nigeria’, 'Ghana’, 'Niger', 'Benin Republic'];
countries.shift();
console.log(countries);

Figure 133: JS array shift() method
JavaScript Array unshift()

The unshift() method adds a new element to an array (at the beginning), and “unshifts” older
elements:

countries = ['Ni 13 ‘Ghana’, 'Niger', 'Benin Republic'];

countries.unshift('Mali’);
console.log(countries);

Figure 134: JS array unshifi() method

Note:

e Using delete() leaves undefined holes in the array.
e Use pop() or shift() instead.

JavaScript Array splice()

The sp1ice () method can be used to add new items to an array:

70

countries = ['Nigeria’, ‘Ghana’, 'Niger', 'Benin Republic'];

countries.splice(2, ©, 'Mali’, 'Togo');
console.log(countries);

Figure 135: JS array splice() method

e The first parameter (2) defines the position where new elements should
be added (spliced in).
e The second parameter (0) defines how many elements should be removed.
e The rest of the parameters (‘Mali’, “Togo’) define the new elements to be added.

Using splice() to Remove Elements

With clever parameter setting, you can use splice () to remove elements without leaving
“holes” in the array:

L}

countries = ['Nigeria’, '(» 'Niger', 'Benin Republic'];

countries.splice(@, 1);
console.log(countries);

Figure 136: JS array splice() method to remove elements

e The first parameter (0) defines the position where new elements should be added (spliced
n).

e The second parameter (1) defines how many elements should be removed.

e The rest of the parameters are omitted. No new elements will be added.

JavaScript Array slice()

The s1ice () method slices out a piece of an array into a new array:

71

countries = ['Nigeria’, 'Ghana’, 'Niger', 'Benin Republic'];

slicedCountries = countries.slice(1);
console.log(slicedCountries);

Figure 137: JS array slice()

e The code snippet above sliced out a part of an array starting from array element 1
(‘Nigeria’)

e The slice() method creates a new array.

e The slice() method does not remove any elements from the source array.

JavaScript Array Search

JavaScript Array indexOf()

The indexOf{() method searches an array for an element value and returns its position.

countries = ['Nigeria’, 'Ghana’, 'Niger’, 'Benin Republic'];

position = countries.indexOf(Ghana');
console.log(position);

Figure 138 JS array indexOf{) method

JavaScript Array includes()

ECMAScript 2016 introduced Array.includes() to arrays. This allows us to check if an element
is present in an array (including NaN, unlike indexOf)

countries = ['Nigeria’, '(» 'Niger', 'Benin Republic'];

find = countries.includes('Niger'});
console.log(find);

Figure 139: JS array includes() method

JavaScript Array find()

The find() method returns the value of the first array element that passes a test function.

This example finds (returns the value of) the first element that is larger than 18

72

findNumberGreaterThankEight = (value)
return value > 8;

numbers = [4, 9, 16, 25, 29];
first = numbers.find(findNumberGreaterThanEight);
console.log(first);

Figure 140: JS array find() method

JavaScript Array findIndex()

The findIndex() method returns the index of the first array element that passes a test function.

The code snippet below finds the index of the first element that is larger than 8.

findNumberGreaterThankEight = (value)
return value > 8;

numbers = [4, 9, 16, 25, 29];
first = numbers.findIndex(findNumberGreaterThankEight);
console.log(first);

Figure 141: JS array findIndex() method
JavaScript Sorting Arrays

Sorting an Array

The sort() method sorts an array alphabetically.

countries = ['Nigeria’, 'G » 'Niger', 'Benin Republic'];

sortCountries = countries.sort();
console.log(sortCountries);

Figure 142: JS array sort() method

73

Reversing an Array

The reverse() method reverses the elements in an array.

countries = ['Nigeria', 'Ghana’, 'Niger', 'Benin Republic'];

reverseCountries = countries.reverse();
console.log(reverseCountries);

Figure 143: JS array reverse() method
Note:

e By combining sort() and reverse(), you can sort an array in descending order

JavaScript Array toSorted() Method

ES2023 added the tosorted () method as a safe way to sort an array without altering the
original array.

The difference between tosorted() and sort () is that the first method creates a new array,
keeping the original array unchanged, while the last method alters the original array.

JavaScript Array toReversed() Method

ES2023 added the toReversed() method as a safe way to reverse an array without altering the
original array.

The difference between toReversed() and reverse() is that the first method creates a new array,
keeping the original array unchanged, while the last method alters the original array.

JavaScript Array Iteration

JavaScript Array forEach()

The forEach() method calls a function (a callback function) once for each array element.

74

myFunction = (value)
txt += ${value}, ";

numbers = [45, 4, 9, 16, 25];
txt = "";
numbers.foreach(myFunction);
console.log(txt);

Figure 144: JS array forEach() method

Expense Tracker App (Practical 3)
Step 1:

Next, let start working on the form, when the user adds the expense and price, it will be added to

the expense list.
Step 2:

Add an id attribute to both the expense name and the price input boxes as shown below:

enseltem” class="input-field” type="text" placeholder="Expense”

ce” class="input-field" type="amount" placeholder="

" class="app-btn app-margin-y-2" type="submit" value="Add"

Figure 145: Adding id to form input boxes

Step 3:

Write the following script to check if everything is set

75

expenseltem = document.getElementById(e

it (expenseItem){

expenseltem.addEventListener("keyup”,
alert(expenseItem.value);

Figure 146: keyup EventListener

X+

-4

sfuser/Documents (159%20Course/expense- tracker- 1/expense-tracker/app...

This page says o[
-
R

Expense Tracker App

= |
Na

T
Expense List

Rent 200000
School Fees 150000
Groceries 50000
Total 400000

Figure 147: Working perfectly

Step 4: Let’s store the values in a variable as shown below:

expenseltem = document.getElementById("ex

expensePrice = document.getElementById(’
expenseAdd = document.getElementById("ex

Figure 148: Storing the variables

Step 5: Let’s print the values of the variables when the user clicks on the add button

76

expenseltem = document.getElementById("
expensePrice = document.getElementById ("
expenseAdd = document.getElementById("e

if(expenseAdd){
expenseAdd.addEventListener(
alert(${expenseItem.value} with a pr

Figure 149: Printing the variables

v Expense Tracker - App N+ X

€« > ¢ @ File C/Users/user/Documents/1S%20Course-20250207T0640297-001/15%20Course/expense-tracker-20250206T0655527-001/expense-tracker/app.... ¥r ‘j New Chrome available

This page says 0["

Transpart with a price of 65000

Expense Tracker App

Transport

65000

Expense List

Rent 200000
School Fees 150000
‘Groceries 50000
Total 400000

Figure 150: Printing the variables 11

Step 6: Let’s create a default object and add the expense list as shown below:

77

expenses = |

item: 'Rent’,
price: 200000

item: 'School Fees’,
price: 150000

item: 'Groceries’,
price: 50000

Figure 151: Default expenses data

Step 7: Let’s remove the hardcoded expenses list we have in our app.html file as shown below:

78

Expense List

class="expense-item"
School Fees
1560600

class="expense-item”
Groceries
50000

expense-item”
Total
ABBoe

Figure 152: Hardcoded data

79

Figure 153: New div created

- Expense Tracker - App X+

€ 5 C @Fie C/Users/user/Documents/IS%20Course-20250207T064029Z-001/15%20Course/expense-trac) 0206T0655527-001/expense-tracker/apphtml ¢~ W @ # £) NewChome available |

Expense Tracker App Good morning! M, Piccolo o=

Expense List

Figure 154: Items removed

let expenselist = document.getElementById(e

expenses.forEach(expense =>
expenselist.innerHTML +=

ElEl 55= @

expense.item}
expense.price

Figure 155: Loop and display the expenses data

80

v Expense Tracker - App N + =

X

€ > ¢ @ File C;/Users/user/Documents/1S%20Course-20250207T0640297-001/15%20Course/expense-tracker-20250206T0655527-001/expense-tracker/app.html r v e - D “ New Chrome available

Expense Tracker App Good morning! Mr, Piccolo [)]c]

N

Expense List

Rent 200000
School Fees 150000
Groceries 50000

Figure 156: The items are displayed

Step 8: Now let’s create the total.

total = expenses.reduce((sum, expense) sum + expense.price, 0);

Figure 157: Sum the total Expense

81

v Expense Tracker - App L

€ 5 G QFle C/Users/user/Documents/IS%20Course-20250207T0640297-001/15%20Course/expense-tracker-20250206 10655522001 fexpense-tracker/apphtml ¥ ¥ @ # £} | €3 NewChome available

Expense Tracker App Good morning! Mr, Piccolo O

N

Expense List

Rent 200000
School Fees 150000
Groceries 50000
Total 400000

Figure 158: Showing total
Step 9: Let’s make it dynamic, once we click on the add button, the items will be added to the

expenses data.

it (expenseAdd){
expenseAdd.addEventListener(“click”,
if(expenseItem.value && expensePrice.value) {
expense = {
item: expenseltem.value,
price: parseFloat(expensePrice.value

.
J

expenses .push(expense) ;
console. log(expenses)

Figure 159: adding new item to the expense data

82

v Expense Tracker - App N+

€ > ¢ @ File C;/Users/user/Documents/)S%20Course-20250207T0640297-001/15%20Course/expense-tracker-20250206T0655527-001/expense-tracker/app.html h:4 s 0}

Dimensions: Resy e 1440 x 45% v Nothrotting v i {g [0 Eements Console Sources MNetwork Performance Memory ity » =21 @ x
m @ r ® hd Default levels 1lssue: B 13
v (4) [{-}, {-} } 1 ipt. js:l
Exp T oot g v s o veo {
r1:{ 1
»2
- »3:{ H
length: 4
i > Array(®)
ExpessaLin
s 0
[, o

Figure 160: the item has been added

Step 10: Let’s update our UI, to make it render dynamic

expenses = [
item: 'Rent’, price: 2eee00 },
item: , price: 150000 },
item: 'G i , price: 50000 }

expenseltem = document.getElementById("
expensePrice = document.getElementByTd(
expenseAdd = document.getElementById(’

expenselist = document.getElementByTId("

renderExpenses = () {

wn

expenselist.innerHTML = "";

expenses.torEach(expense
expenselist.innerHTML +=
’ ' 1se-item
n>%${expense.item}
n>%${expense.price}

total = expenses.reduce((sum, expense sum + expense.price, 0);

&3

total = expenses.reduce((sum, expense sum + expense.price, 0);

expenseList.innerHTML +=

renderExpenses();

if (expenseAdd) {
expenseAdd. addEVPﬂtletEHEP <
if (expenseItem.value && PXPPHSEPPILP value)
expense = {
item: expenseItem.value,
price: parseFloat(expensePrice.value

I
I ¥
expenses.push(expense);

I‘E'I'IdE'I‘EX[JerI 5as

expenseltem.value = "";

mw

expensePrice.value = g

Figure 161: Updated Script to render the Ul

84

Expense Tracker - App

€ > C OFie sfuser/Documents/JS%20Course-20250207T0640292-001/15%20Course/expense-tracker-2025020610655522-001/expense-tracker/app.html # £) NewChiome available }

Expense Tracker App Good morning! M, Piccolo O

Transport

70000

Expense List

Rent 200000
School Fees 150000
Groceries 50000
Total 400000

Expense Tracker - App

€ 5 C Ofe G 20Course-20250207T06 001/15%20Course/expense-tracker-20250206 T065552Z-001/expense-tracker/app.html E # £}) NewChrome available

Expense Tracker App Good morning! Mt Piccolo 0 =+

Expense List

Rent 200000
School Fees 150000
Groceries 50000
Transport 70000
Total 470000

Figure 162: New item added and the Ul have been updated

Step 11: If you notice, once we reloaded the page, the new data are deleted. To resolve this, we

will use JavaScript localStorage.

85

expenses = JSON.parse(localStorage.getItem(
{ item: 'Rent’, price: 200000 },
{ item: ° , price: 156000 }

; , price: 50000 }

expenseltem = document.getElementById("
expensePrice = document.getElementById ("
expenseAdd = document.getElementById("ex
expenselist = document.getElementById("

renderkExpenses = () 1

we

expenselList.innerHTML = "";

expenses.forkach(expense
rHTML +=

n>%${expense.item}<
n>${expense.price

total = expenses.reduce((sum, expense

86

sum + expense.pr‘ice,

total = expenses.reduce((sum, expense sum + expense.price, 8);

expenseList.innerHTML +=
; 1ass—"exp

saveExpenses = ()

localstorage.setItem(’ ", JSON.stringify(expenses));

IH
renderExpenses();

if (expenseadd) {
expenseAdd.addEventListener("c
if (expenseItem.value && expensePrice.value) {{

expense =
item: expenseItem.value,
price: parseFloat(expensePrice.value

: »
expenses.push(expense);

saveExpense
renderExpenses

87

if (expenseAdd) {
expenseAdd.addEventListener(“click”, .
it (expenseltem.value &% expensePrice.value)
let expense = {
item: expenseItem.value,
price: parseFloat(expensePrice.value

expenses.push(expense);

saveExpenses()
renderExpenses

expenseltem.value = "";

expensePrice.value = "";

Figure 163: Updated Code

- Expense Tracker - App X+

€ =+ © (@Fie C/Users/user/Documents/IS%20Courss

001/15%20Course/expense-tracker-20250206T0655527-001 fexpense-tracker/apphtml v~ ¥ @ # &)

Expense Tracker App Good morning! M, Piccolo o=

Training

20000

Expense List

Rent 200000
School Fees 150000
Groceries 50000
Transport 80000
Clothings 45000
Total 525000

88

Expense Tracker - App B+

G @ File C/Users/user/Documents/JS3%20Course-20250207T0640292-001/1S%20Course/expense-tracker-20250206 10655527001 fexpense-tracker/apphtml ¥ ¥ @ # £} #3 NewChomeavailable

Expense Tracker App Good morning! Mr, Piccolo [»]c]

N

Expense List

Rent 200000
School Fees 150000
Groceries 50000
Transport 80000
Clothings 45000
Training 20000
Total 545000

Figure 164: Now the data are stored

Step 12: Remove an item from the list

nses = JSON.parse(localStorage.getIte
item: i 200000 },
item: C , price: 150000 },
item: ¢ s', price: 50000 }

expenseltem = document.getElementById(
expensePrice = document.getElementById(”
expenseAdd = document.getElementById ("
expenselist = document.getElementById("

renderExpenses = ()

expenselist.innerHTML =

expenses.forkach((expense, index
expenselist.innerHTML
d

span>${expense.i

total = expenses.reduce((sum, expense) => sum + expense.price,

&9

total = expenses.reduce((sum, expense sum + expense.price, 9);

saveExpenses = ()
localstorage.setItem(” s", JSON.stringify(expenses));

deleteExpense = (index)
expenses.splice(index, 1);
saveExpenses
renderExpens

renderExpenses();

90

renderExpenses();

if (expenseAdd) {
expenseAdd.addEventListener(
if (expenseItem.value && expensePrice.value) {
let expense = {
item: expenseltem.value,
price: parseFloat(expensePrice.value

expenses.push(expense);

saveExpense:
renderkexpenses (

e

expenseItem.value = "";

"o

expensePrice.value = "";

Figure 165: Add delete

v Expense Tracker - App o+

€ 3 @ OFfie CfUsers/user/Documents/IS%20Course-20250207T064029Z-001/15%20Course/expense-tracker-20250206T065552Z-001 /expense-tracker/apphtml v~ W @ # £} €3 NewChrome available

Expense Tracker App Good morning! Mr, Piccolo (=

Expense List

Clothings
Training
Rent

Total 6065000

Figure 166: Complete Expense Tracker App

91

JavaScript Array map()

The map() method creates a new array by performing a function on each array element.
The map() method does not execute the function for array elements without values.
The map() method does not change the original array.

This example multiplies each array value by 2:

45, 4, 9, 16, 25];
(value, index, array
2;

numbersl = |
myFunction =
return value *
numbers2 = numbersl.map(myFunction);
console.log{numbers2);

Figure 167 JS array map() method

Note: When a callback function uses only the value parameter, the index and array parameters

can be omitted.

JavaScript Array filter()

The filter() method creates a new array with array elements that pass a test.

This example creates a new array from elements with a value less than 18

numbers = [45, 4, 9,
myFunction = (value)
return value < 18;

numbers.filter(myFunction);
sThan18)

Figure 168: JS array filter() method

JavaScript Array Spread (...)

The ... operator expands an iterable (like an array) into more elements:

92

ql = ["Jan",
[”.":".F:r'”,
qul _ [”:I_Jl”,

I._—.l-J- — [lll::”:tlr,
year = [...q1,
console.log(year);

Figure 169: JS array spread (...)
JavaScript Maps
A Map holds key-value pairs where the keys can be any datatype.

A Map remembers the original insertion order of the keys.

How to Create a Map

You can create a JavaScript Map by:

e Passing an Array to new Map()
e Create a Map and use Map.set()

The new Map() Method

You can create a Map by passing an Array to the new Map () constructor:

[-3 P.E:. = IL"il ap (|:
"Honda", 50000],

70000

Figure 170: JS new Map() constructor

The set() Method
You can add elements to a Map with the set() method:

93

cars = Map();
cars.set("Honda", 56000);

cars yota"”, 30000);
cars "Mercedes Benz", 70000);
console.log(cars);

Figure 171: JS map set() method

The get() Method
The get() method gets the value of a key in a Map:

cars = Map();
s.set("Honda", 56000);
2", 30000);
[es Benz", 70000);
console.log(cars.get("Toyota"));

Figure 172: JS map get() method

Map.size

The size property returns the number of elements in a map:

Map();
onda™, 50000);

30000);
Benz", 70000);

Figure 173: JS map size property

Map.delete()

The delete() method removes a map element:

94

cars = Map();
cars.set("Honda", 50000);

cars.set("Toyota", 30000);
cars.set("” cedes Benz", 70000);
console.log(cars.delete("Honda")};

Figure 174: JS map delete() method

Map.clear()

The clear() method removes all the elements from a map:

cars = Map();
s.set("Honda™, 50000);
s.set("Toyota”, 30000);
s.set("M s Benz", 70000);
console.log(cars.clear());

Figure 175: JS map clear() method

Map.has()

The has() method returns true if a key exists in a map:

cars = Map();
s.set("Honda™, 50000);

s.set("Toyota"”, 30000);
es Benz", 70000);
console.log(cars.has("Honda"));

Figure 176: JS map has() method

Map.forEach()

The forEach() method invokes a callback for each key/value pair in a map:

95

cars = Map();
cars.set("Honda", 50000);

cars.set("Mercedes Benz", 70000);

listofcars = "";
cars.foreach ((value, key) {
listofcCars += "${key} price is ${value},

console.log(listofCars);

Figure 177: JS Map forEach() method

Map.entries()

The entries() method returns an iterator object with the [key,values] in a map:

cars = Map();
cars.set("Honda", 50000);
cars.set("Toyota", 30000);
s.set("Mercedes Benz", 70000);

listofCars = "";
for(X cars.entries()) {
listofCars += x;

console.log(listofcCars);

Figure 178: JS Map entries() method

96

Map.keys()

The keys() method returns an iterator object with the keys in a map:

cars = Map();
s.set("Honda™, 50000);
s.set("Toyota™, 30000);
s.set("M s Benz", 70000);

listofcars = "";

for(X cars.keys()) {
listofCars += x;

console.log(listofcCars);

Figure 179: JS array keys() method

Map.values()

The values() method returns an iterator object with the values in a map:

97

Map();
da", 50000);
2", 30000);

3
o

Benz™, 70000);

listofcars = "";
for(X cars.values())
listofCars += x;

console.log(listofCars);

Figure 180: JS array values() method

References

D)
2)
3)
4)
5)
6)
7)
8)
9

https://www.w3schools.com/js/default.asp
https://www.w3schools.com/js/js_whereto.asp
https://www.w3schools.com/js/js_output.asp
https://www.w3schools.com/js/js_variables.asp
https://www.w3schools.com/js/js_operators.asp
https://www.w3schools.com/js/js_comparisons.asp
https://www.w3schools.com/js/js_datatypes.asp
https://www.w3schools.com/js/js_functions.asp
https://www.w3schools.com/js/js_arrow_function.asp

10) https://www.w3schools.com/js/js_objects.asp

11) https://www.w3schools.com/js/js_object_property.asp

12) https://www.w3schools.com/js/js_object_method.asp

13) https://www.w3schools.com/js/js_object_display.asp

14) https://www.w3schools.com/js/js_object_constructors.asp
15) https://www.w3schools.com/js/js_events.asp

16) https://www.w3schools.com/js/js_htmldom_eventlistener.asp

98

https://www.w3schools.com/js/default.asp
https://www.w3schools.com/js/js_whereto.asp
https://www.w3schools.com/js/js_output.asp
https://www.w3schools.com/js/js_variables.asp
https://www.w3schools.com/js/js_operators.asp
https://www.w3schools.com/js/js_comparisons.asp
https://www.w3schools.com/js/js_datatypes.asp
https://www.w3schools.com/js/js_functions.asp
https://www.w3schools.com/js/js_arrow_function.asp
https://www.w3schools.com/js/js_objects.asp
https://www.w3schools.com/js/js_object_property.asp
https://www.w3schools.com/js/js_object_method.asp
https://www.w3schools.com/js/js_object_display.asp
https://www.w3schools.com/js/js_object_constructors.asp
https://www.w3schools.com/js/js_events.asp
https://www.w3schools.com/js/js_htmldom_eventlistener.asp

17) https:// www.w3schools.com/js/js

strings.asp

18) https:// www.w3schools.com/js/js

string methods.asp

19) https://www.w3schools.com/js/js

string search.asp

20) https://www.w3schools.com/js/js

string templates.asp

21) https://www.w3schools.com/js/js

arrays.asp

22) https://www.w3schools.com/js/js

array methods.asp

23) https://www.w3schools.com/js/js_

array_search.asp

24) https://www.w3schools.com/js/js_array_sort.asp

25) https://www.w3schools.com/js/js_if else.asp

26) https://www.w3schools.com/js/js_switch.asp

27) https://www.w3schools.com/js/js_loop_for.asp

28) https://www.w3schools.com/js/js_loop_while.asp

29) https://www.w3schools.com/js/js_break.asp

30) https://www.w3schools.com/js/js_maps.asp

99

https://www.w3schools.com/js/js_strings.asp
https://www.w3schools.com/js/js_string_methods.asp
https://www.w3schools.com/js/js_string_search.asp
https://www.w3schools.com/js/js_string_templates.asp
https://www.w3schools.com/js/js_arrays.asp
https://www.w3schools.com/js/js_array_methods.asp
https://www.w3schools.com/js/js_array_search.asp
https://www.w3schools.com/js/js_array_sort.asp
https://www.w3schools.com/js/js_if_else.asp
https://www.w3schools.com/js/js_switch.asp
https://www.w3schools.com/js/js_loop_for.asp
https://www.w3schools.com/js/js_loop_while.asp
https://www.w3schools.com/js/js_break.asp
https://www.w3schools.com/js/js_maps.asp

