
1

Expense

Tracker

With

JavaScript

Author: Kabir Yusuf Bashir

Team Piccolo

2025

2

3

Table of Contents

Table of Contents .. 3

Table of Figures .. 7

Introduction to JavaScript ... 13

Foot Note: ... 13

Adding JavaScript to a web page .. 13

Internal .. 14

External ... 15

JavaScript Display Data .. 17

innerHTML ... 17

document.write() .. 17

window.alert() .. 17

console.log()... 17

JavaScript Variables .. 18

When to Use var, let, or const? ... 19

JavaScript Identifiers .. 19

JavaScript let ... 19

Block Scope .. 19

Global Scope ... 20

JavaScript const .. 21

Cannot be Reassigned ... 21

When to use JavaScript const? .. 21

JavaScript Operators ... 22

JavaScript Assignment .. 22

JavaScript Addition ... 22

JavaScript Multiplication .. 23

Types of JavaScript Operators .. 23

JavaScript Arithmetic Operators ... 23

JavaScript Assignment Operators ... 24

JavaScript Comparison Operators ... 24

JavaScript Logical Operators .. 25

4

JavaScript Ternary Operators .. 26

JavaScript Nullish Coalescing Operator (??) .. 26

JavaScript Optional Chaining Operator (?.) .. 26

JavaScript Data Type .. 26

JavaScript Strings.. 28

Quotes Inside Quotes .. 29

Template Strings ... 29

JavaScript String Methods .. 29

String Length .. 29

Extracting String Parts .. 30

JavaScript String slice() ... 30

Converting to Upper and Lower Case .. 31

JavaScript String concat() .. 31

JavaScript String trim() .. 32

JavaScript String repeat() ... 32

Replacing String Content .. 32

JavaScript String ReplaceAll() .. 33

Converting a String to an Array .. 33

JavaScript String split().. 33

JavaScript String Search ... 34

JavaScript String indexOf() .. 34

JavaScript String search() .. 34

JavaScript String match() ... 34

JavaScript String includes() .. 34

JavaScript String startsWith() .. 35

JavaScript String endsWith() ... 35

JavaScript Template Strings .. 35

Back-Tics Syntax .. 35

Interpolation .. 35

JavaScript if, else, and else if .. 36

Conditional Statements ... 36

5

The if Statement .. 36

The else Statement .. 36

The else if Statement ... 37

JavaScript Switch Statement ... 37

JavaScript For Loop .. 40

Different Kinds of Loops .. 40

The For Loop .. 40

JavaScript While Loop .. 41

The Do While Loop .. 42

JavaScript Break and Continue ... 42

JavaScript Functions ... 43

JavaScript Arrow Function ... 44

Expense Tracker App (Practical 1) ... 46

JavaScript Events .. 49

Common HTML Events .. 50

JavaScript HTML DOM EventListener .. 50

Expense Tracker App (Practical II) ... 51

JavaScript Objects ... 57

Object Properties ... 57

Object Methods ... 57

Accessing Object Properties ... 58

JavaScript Object Methods ... 58

JavaScript Object Properties ... 59

Adding New Properties ... 59

Deleting Properties.. 60

Nested Objects .. 60

JavaScript Object Methods ... 61

Using JavaScript Methods .. 61

JavaScript Display Objects ... 62

Displaying Object Properties .. 62

Displaying Properties in a Loop ... 63

6

Using Object.values() .. 63

Using JSON.stringify() .. 64

JavaScript Arrays .. 65

Why Use Arrays? .. 65

Accessing Array Elements .. 66

Changing an Array Element .. 66

Converting an Array to a String .. 66

The length Property... 67

Looping Array Elements ... 67

Adding Array Elements... 68

The Difference Between Arrays and Objects .. 68

When to Use Arrays. When to use Objects. .. 68

JavaScript Array Methods ... 68

JavaScript Array at() .. 68

JavaScript Array join() ... 69

JavaScript Array pop() ... 69

JavaScript Array push().. 69

JavaScript Array shift() .. 70

JavaScript Array unshift() .. 70

JavaScript Array splice() .. 70

Using splice() to Remove Elements .. 71

JavaScript Array slice() .. 71

JavaScript Array Search .. 72

JavaScript Array indexOf() .. 72

JavaScript Array includes() .. 72

JavaScript Array find() ... 72

JavaScript Array findIndex().. 73

JavaScript Sorting Arrays ... 73

Sorting an Array .. 73

Reversing an Array ... 74

JavaScript Array toSorted() Method .. 74

7

JavaScript Array toReversed() Method .. 74

JavaScript Array Iteration ... 74

JavaScript Array forEach() .. 74

Expense Tracker App (Practical 3) ... 75

JavaScript Array map() .. 92

JavaScript Array filter() ... 92

JavaScript Array Spread (...) ... 92

JavaScript Maps .. 93

How to Create a Map .. 93

The new Map() Method ... 93

The set() Method .. 93

The get() Method ... 94

Map.size .. 94

Map.delete() ... 94

Map.clear() ... 95

Map.has() ... 95

Map.forEach() .. 95

Map.entries() .. 96

Map.keys() ... 97

Map.values() .. 97

References ... 98

Table of Figures

Figure 1: Adding JavaScript to a web page .. 14

Figure 2: Adding JavaScript in Head Tag ... 14

Figure 3: Adding JavaScript in Body Tag ... 15

Figure 4: Adding JavaScript (External) .. 16

Figure 5: Adding several script files ... 16

Figure 6: JS innerHTML ... 17

Figure 7: document.write() .. 17

Figure 8: window.alert() ... 17

Figure 9: console.log() ... 17

8

Figure 10: JS Variable Declaration ... 18

Figure 11: JS Variable Declaration II .. 18

Figure 12: JS Variable Declaration III .. 18

Figure 13: JS Variable Declaration IV .. 18

Figure 14: JS Block Scope .. 20

Figure 15: JS Global Scope... 20

Figure 16: JS let Declaration... 20

Figure 17: JS var Declaration ... 21

Figure 18: JS const .. 21

Figure 19: JS const declaring an Array ... 22

Figure 20: JS const declaring an Object ... 22

Figure 21: JS assignment operator .. 22

Figure 22: JS addition operator ... 23

Figure 23: JS multiplication operator ... 23

Figure 24: JS Arithmetic Operator .. 24

Figure 25: JS Assignment Operator .. 24

Figure 26: JS Comparison Operators .. 24

Figure 27: JS Comparison Operator ... 25

Figure 28: JS Concatenation Operator .. 25

Figure 29: JS Logical Operators table .. 25

Figure 30: JS Logical Operator ... 25

Figure 31: JS Ternary Operator ... 26

Figure 32: JS Nullish Coalescing Operator (??) ... 26

Figure 33: JS Optional Chaining Operator ... 26

Figure 34: Number Data Type .. 27

Figure 35: String Data Type .. 27

Figure 36: Boolean Data Type .. 27

Figure 37: Object Data Type ... 27

Figure 38: Array Object Data Type ... 28

Figure 39: Date Object Data Type .. 28

Figure 40: Concept of Data Type .. 28

Figure 41: Adding a number and a string.. 28

Figure 42: JS Strings ... 28

Figure 43: Quotes inside quotes .. 29

Figure 44: JS Template Strings ... 29

Figure 45: JS Template strings with quotes .. 29

Figure 46: JS String Length .. 30

Figure 47: JS String slice() .. 30

Figure 48: JS String slice() omitting the second parameter ... 31

Figure 49: JS String slice() negative parameter ... 31

9

Figure 50: JS String toUpperCase() ... 31

Figure 51: JS String toLowerCase() .. 31

Figure 52: JS String concat() ... 32

Figure 53: JS String trim() ... 32

Figure 54: JS String repeat() .. 32

Figure 55: JS String replace() .. 32

Figure 56: JS String replaceAll() ... 33

Figure 57: JS String split() on commas.. 33

Figure 58: JS String split() on spaces .. 33

Figure 59: JS String split() on pipe .. 33

Figure 60: JS String search indexOf() ... 34

Figure 61: JS String search().. 34

Figure 62: JS String match() .. 34

Figure 63: JS String includes() .. 34

Figure 64: JS Strings startsWith() .. 35

Figure 65: JS Strings endsWith() ... 35

Figure 66: Back-Tics Syntax ... 35

Figure 67: JS Template String Interpolation ... 36

Figure 68: JS if statement ... 36

Figure 69: JS else statement .. 37

Figure 70: JS else if statement .. 37

Figure 71: JS switch statement ... 38

Figure 72: JS switch statement (common code block) ... 39

Figure 73: JS for loop ... 40

Figure 74: JS for loop II .. 41

Figure 75: JS while loop ... 41

Figure 76: JS do while loop .. 42

Figure 77: JS break statement ... 42

Figure 78: JS continue statement .. 43

Figure 79: JS function syntax ... 43

Figure 80: JavaScript Function ... 44

Figure 81: JavaScript Arrow Function .. 44

Figure 82: Before Arrow Function .. 45

Figure 83: With Arrow Function ... 45

Figure 84: JS Arrow Function return value by default ... 45

Figure 85: JS Arrow Function with parameters .. 45

Figure 86: JS Arrow function without parentheses ... 46

Figure 87: Creating script.js .. 46

Figure 88: adding id attribute to welcome address div ... 46

Figure 89: Add the script.js link .. 47

10

Figure 90: welcomeMsg() .. 47

Figure 91: Welcome Message ... 48

Figure 92: Welcome Message is now dynamic ... 48

Figure 93: JavaScript onclick event .. 49

Figure 94: displayDate function.. 49

Figure 95: JavaScript addEventListener() ... 51

Figure 96: JavaScript addEventListener() II .. 51

Figure 97: creating dark mode .. 51

Figure 98: Creating dark mode II.. 52

Figure 99: Creating dark mode III .. 53

Figure 100: Creating dark mode IV .. 53

Figure 101: hiding the light icon ... 53

Figure 102: Light mode is hidden ... 54

Figure 103: Dark Mode Styling function .. 55

Figure 104: dark mode class ... 56

Figure 105: Light Mode .. 56

Figure 106: Dark Mode ... 56

Figure 107: JS Object.. 58

Figure 108: objectName.propertyName.. 58

Figure 109: objectName['propertyName'] .. 58

Figure 110: JS Object Methods ... 59

Figure 111: Adding New property to an Object .. 59

Figure 112: Deleting property from an Object .. 60

Figure 113: Nested Object .. 61

Figure 114: JS Object Methods ... 61

Figure 115: Using JS methods .. 62

Figure 116: Displaying Object Properties ... 62

Figure 117: Displaying Properties using Loop ... 63

Figure 118: Using Object.values() ... 64

Figure 119: Using JSON.stringify() ... 65

Figure 120: JS arrays .. 65

Figure 121: JS Arrays List of countries .. 65

Figure 122: JS accessing array elements .. 66

Figure 123: Changing an Array Element .. 66

Figure 124: Converting an Array to String ... 67

Figure 125: JS array length property .. 67

Figure 126: Loop through an Array .. 67

Figure 127: Loop through an Array using forEach() ... 68

Figure 128: JS array push() .. 68

Figure 129: JS array at() method ... 69

11

Figure 130: JS array join() method .. 69

Figure 131: JS array pop() method .. 69

Figure 132: JS array push() method ... 70

Figure 133: JS array shift() method ... 70

Figure 134: JS array unshift() method ... 70

Figure 135: JS array splice() method ... 71

Figure 136: JS array splice() method to remove elements ... 71

Figure 137: JS array slice() .. 72

Figure 138: JS array indexOf() method ... 72

Figure 139: JS array includes() method ... 72

Figure 140: JS array find() method .. 73

Figure 141: JS array findIndex() method ... 73

Figure 142: JS array sort() method .. 73

Figure 143: JS array reverse() method ... 74

Figure 144: JS array forEach() method .. 75

Figure 145: Adding id to form input boxes ... 75

Figure 146: keyup EventListener .. 76

Figure 147: Working perfectly .. 76

Figure 148: Storing the variables .. 76

Figure 149: Printing the variables ... 77

Figure 150: Printing the variables II ... 77

Figure 151: Default expenses data .. 78

Figure 152: Hardcoded data .. 79

Figure 153: New div created ... 80

Figure 154: Items removed ... 80

Figure 155: Loop and display the expenses data .. 80

Figure 156: The items are displayed ... 81

Figure 157: Sum the total Expense ... 81

Figure 158: Showing total ... 82

Figure 159: adding new item to the expense data ... 82

Figure 160: the item has been added... 83

Figure 161: Updated Script to render the UI .. 84

Figure 162: New item added and the UI have been updated .. 85

Figure 163: Updated Code .. 88

Figure 164: Now the data are stored ... 89

Figure 165: Add delete .. 91

Figure 166: Complete Expense Tracker App .. 91

Figure 167 JS array map() method... 92

Figure 168: JS array filter() method... 92

Figure 169: JS array spread (...) .. 93

12

Figure 170: JS new Map() constructor... 93

Figure 171: JS map set() method ... 94

Figure 172: JS map get() method ... 94

Figure 173: JS map size property.. 94

Figure 174: JS map delete() method .. 95

Figure 175: JS map clear() method .. 95

Figure 176: JS map has() method .. 95

Figure 177: JS Map forEach() method ... 96

Figure 178: JS Map entries() method... 96

Figure 179: JS array keys() method ... 97

Figure 180: JS array values() method .. 98

13

Introduction to JavaScript

JavaScript is the world’s most popular programming language. JavaScript is the programming

language of the Web. JavaScript is easy to learn.

JavaScript and Java are completely different languages, both in concept and design. JavaScript is

one of the 3 languages all web developers must learn:

• HTML to define the content of web pages.

• CSS to specify the layout of web pages.

• JavaScript to program the behavior of web pages.

JavaScript can be used to change HTML content.

• One of many JavaScript HTML methods is getElementById().

JavaScript can change HTML attributes.

JavaScript can change HTML Styles (CSS)

• document.getElementById(“header”).style.fontSize = “15px”;

JavaScript can hide HTML Elements.

• document.getElementById(“header”).style.display = “none”;

JavaScript can show HTML Elements.

• document.getElementById(“header”).style.display = “block”;

Foot Note:

• You don’t have to get or download JavaScript.

• JavaScript is already running in your browser on your computer, on your tablet, and on

your smart-phone. Free to use for everyone.

• JavaScript accepts both double and single quotes.

Adding JavaScript to a web page

JavaScript can be added to web page using internal (inside the web page) or external (outside the

web page).

14

Internal

JavaScript code is nestled between <script> and </script> tag as shown below:

Figure 1: Adding JavaScript to a web page

Scripts can be placed in the <body>, or in the <head> section of an HTML page, or in both.

Figure 2: Adding JavaScript in Head Tag

Note: Placing scripts at the bottom of the <body> element improves the display speed, because

script interpretation slows down the display.

15

Figure 3: Adding JavaScript in Body Tag

External

Scripts can also be placed in external files just like how you do CSS external styling. External

scripts are practical when the same code is used in many different web pages.

JavaScript files have the file extension .js.

You can place an external script reference in <head> or <body> as you like.

The script will behave as if it was located exactly where the <script> tag is located.

To use an external script, put the name of the script file in the src (source) attribute of

a <script> tag as shown below:

16

Figure 4: Adding JavaScript (External)

Placing scripts in external files has some advantages:

• It separates HTML and code

• It makes HTML and JavaScript easier to read and maintain

• Cached JavaScript files can speed up page loads

To add several script files to one page - use several script tags as shown below:

Figure 5: Adding several script files

17

JavaScript Display Data

JavaScript can “display” data in different ways:

• Writing into an HTML element, using innerHTML.

• Writing into the HTML output using document.write().

• Writing into an alert box, using window.alert().

• Writing into the browser console, using console.log().

innerHTML

Figure 6: JS innerHTML

document.write()

Figure 7: document.write()

Note: Using document.write() after an HTML document is loaded, will delete all existing

HTML.

window.alert()

Figure 8: window.alert()

Note: In JavaScript, the window object is the global scope object. This means that variables,

properties, and methods by default belong to the window object. This also means that specifying

the window keyword is optional:

console.log()

Figure 9: console.log()

18

JavaScript Variables

Variables are Containers for Storing Data.

JavaScript Variables can be declared in 4 ways:

• Automatically

Figure 10: JS Variable Declaration

• Using var

Figure 11: JS Variable Declaration II

• Using let

Figure 12: JS Variable Declaration III

• Using const

Figure 13: JS Variable Declaration IV

19

When to Use var, let, or const?

1) Always declare variables

2) Always use const if the value should not be changed

3) Always use const if the type should not be changed (Arrays and Objects)

4) Only use let if you can’t use const

5) Only use var if you MUST support old browsers.

JavaScript Identifiers

All JavaScript variables must be identified with unique names.

These unique names are called identifiers.

Identifiers can be short names (like x and y) or more descriptive names (age, sum, totalVolume).

The general rules for constructing names for variables (unique identifiers) are:

• Names can contain letters, digits, underscores, and dollar signs.

• Names must begin with a letter.

• Names can also begin with $ and _ (but we will not use it in this tutorial).

• Names are case sensitive (y and Y are different variables).

• Reserved words (like JavaScript keywords) cannot be used as names.

Note:

• The var keyword was used in all JavaScript code from 1995 to 2015.

• The let and const keywords were added to JavaScript in 2015.

• The var keyword should only be used in code written for older browsers.

JavaScript let

• The let keyword was introduced in ES6 (2015)

• Variables declared with let have Block Scope

• Variables declared with let must be Declared before use

• Variables declared with let cannot be Redeclared in the same scope

Block Scope

• Before ES6 (2015), JavaScript did not have Block Scope.

• JavaScript had Global Scope and Function Scope.

• ES6 introduced the two new JavaScript keywords: let and const.

• These two keywords provided Block Scope in JavaScript:

https://www.w3schools.com/js/js_es6.asp

20

Figure 14: JS Block Scope

Global Scope

• Variables declared with the var always have Global Scope.

• Variables declared with the var keyword can NOT have block scope:

• Variables declared with var inside a { } block can be accessed from outside the block:

Figure 15: JS Global Scope

Cannot be Redeclared

• Variables defined with let can not be redeclared.

• You can not accidentally redeclare a variable declared with let.

Figure 16: JS let Declaration

But variables defined with var can be redeclared:

21

Figure 17: JS var Declaration

Note:

• let and const have block scope.

• let and const cannot be redeclared.

• let and const must be declared before use.

JavaScript const

• The const keyword was introduced in ES6 (2015)

• Variables defined with const cannot be Redeclared

• Variables defined with const cannot be Reassigned

• Variables defined with const have Block Scope

Cannot be Reassigned

A variable defined with the const keyword cannot be reassigned:

Figure 18: JS const

When to use JavaScript const?

Always declare a variable with const when you know that the value should not be changed.

Use const when you declare:

• A new Array

• A new Object

https://www.w3schools.com/js/js_es6.asp

22

• A new Function

• A new RegExp

Figure 19: JS const declaring an Array

Figure 20: JS const declaring an Object

JavaScript Operators

JavaScript operators are used to perform different types of mathematical and logical

computations.

Examples:

• The Assignment Operator = assigns values

• The Addition Operator + adds values

• The Multiplication Operator * multiplies values

• The Comparison Operator > compares values

JavaScript Assignment

The Assignment Operator (=) assigns a value to a variable:

Figure 21: JS assignment operator

JavaScript Addition

The Addition Operator (+) adds numbers:

23

Figure 22: JS addition operator

JavaScript Multiplication

The Multiplication Operator (*) multiplies numbers:

Figure 23: JS multiplication operator

Types of JavaScript Operators

There are different types of JavaScript operators:

• Arithmetic Operators

• Assignment Operators

• Comparison Operators

• Logical Operators

• Ternary Operators

• Type Operators

JavaScript Arithmetic Operators

Arithmetic Operators are used to perform arithmetic on numbers:

Operator Description

+ Addition

- Subtraction

* Multiplication

** Exponentiation

/ Division

% Modulus (Remainder)

++ Increment

24

-- Decrement

Figure 24: JS Arithmetic Operator

JavaScript Assignment Operators

Assignment operators assign values to JavaScript variables.

The Addition Assignment Operator (+=) adds a value to a variable.

Figure 25: JS Assignment Operator

JavaScript Comparison Operators

Comparison operators are used in logical statements to determine equality or difference between

variables or values.

Operator Description

= = Equal to

= = = Equal value and equal type

! = Not Equal

! = = Not equal value and equal type

> Greater than

< Less than

> = Greater than or equal to

< = Less than or equal to

? Ternary operator

Figure 26: JS Comparison Operators

25

Figure 27: JS Comparison Operator

Note:

• When used on strings, the + operator is called the concatenation operator.

Figure 28: JS Concatenation Operator

JavaScript Logical Operators

Logical operators are used to determine the logic between variables or values.

Operator Description

&& And

| | Or

! Not Equal

Figure 29: JS Logical Operators table

Figure 30: JS Logical Operator

26

JavaScript Ternary Operators

JavaScript also contains a conditional operator that assigns a value to a variable based on some

condition.

Figure 31: JS Ternary Operator

JavaScript Nullish Coalescing Operator (??)

The ?? operator returns the first argument if it is not nullish (null or undefined).

Figure 32: JS Nullish Coalescing Operator (??)

Note: This is useful when fetching data from an API endpoint.

JavaScript Optional Chaining Operator (?.)

The ?. operator returns undefined if an object is undefined or null (instead of throwing an error).

Figure 33: JS Optional Chaining Operator

JavaScript Data Type

In programming, data type is an important concept.

To be able to operate on variables, it is important to know something about the type.

27

JavaScript has 8 Datatypes

• String

• Number

• Bigint

• Boolean

• Undefined

• Null

• Symbol

• Object

Figure 34: Number Data Type

Figure 35: String Data Type

Figure 36: Boolean Data Type

Figure 37: Object Data Type

28

Figure 38: Array Object Data Type

Figure 39: Date Object Data Type

Without data types, a computer cannot safely execute the statement below:

Figure 40: Concept of Data Type

Note: When adding a number and a string, JavaScript will treat the number as a string. The

statement above will be executed as shown below:

Figure 41: Adding a number and a string

JavaScript Strings

Strings are for storing text.

Strings are written with quotes.

Figure 42: JS Strings

29

Note:

• Strings created with single or double quotes work the same.

• There is no difference between the two.

Quotes Inside Quotes

You can use quotes inside a string, as long as they don’t match the quotes surrounding the string:

Figure 43: Quotes inside quotes

Template Strings

Templates were introduced with ES6 (JavaScript 2016).

Templates are strings enclosed in backticks as shown below:

Figure 44: JS Template Strings

Templates allow single and double quotes inside a string as shown below:

Figure 45: JS Template strings with quotes

JavaScript String Methods

String Length

To find the length of a string, use the built-in length property as shown below:

30

Figure 46: JS String Length

Extracting String Parts

There are 3 methods for extracting a part of a string:

• slice(start, end)

• substring(start, end)

• substr(start, length)

JavaScript String slice()

slice() extracts a part of a string and returns the extracted part in a new string.

The method takes 2 parameters: start position, and end position (end not included)

Note:

• JavaScript counts positions from zero.

• First position is 0.

• Second position is 1

Figure 47: JS String slice()

31

Figure 48: JS String slice() omitting the second parameter

Figure 49: JS String slice() negative parameter

Converting to Upper and Lower Case

A string is converted to upper case with toUpperCase():

A string is converted to lower case with toLowerCase():

Figure 50: JS String toUpperCase()

Figure 51: JS String toLowerCase()

JavaScript String concat()

concat() joins two or more strings:

32

Figure 52: JS String concat()

JavaScript String trim()

The trim() method removes whitespace from both sides of a string.

Figure 53: JS String trim()

JavaScript String repeat()

The repeat() method returns a string with a number of copies of a string.

The repeat() method returns a new string.

The repeat() method does not change the original string.

Figure 54: JS String repeat()

Replacing String Content

The replace() method replaces a specified value with another value in a string

Figure 55: JS String replace()

33

Note:

• By default, the replace() method is case sensitive. Writing PICCOLO (with upper-case)

will not work.

JavaScript String ReplaceAll()

In 2021, JavaScript introduced the string method replaceAll():

Figure 56: JS String replaceAll()

Converting a String to an Array

If you want to work with a string as an array, you can convert it to an array.

JavaScript String split()

A string can be converted to an array with the split() method.

Figure 57: JS String split() on commas

Figure 58: JS String split() on spaces

Figure 59: JS String split() on pipe

34

JavaScript String Search

JavaScript String indexOf()

The indexOf() method returns the index (position) of the first occurrence of a string in a string,

or it returns -1 if the string is not found:

Figure 60: JS String search indexOf()

JavaScript String search()

The search() method searches a string for a string (or a regular expression) and returns the

position of the match:

Figure 61: JS String search()

JavaScript String match()

The match() method returns an array containing the results of matching a string against a string

(or a regular expression).

Figure 62: JS String match()

JavaScript String includes()

The includes() method returns true if a string contains a specified value. Otherwise, it

returns false.

Figure 63: JS String includes()

35

JavaScript String startsWith()

The startsWith() method returns true if a string begins with a specified value.

Otherwise, it returns false:

Figure 64: JS Strings startsWith()

JavaScript String endsWith()

The endsWith() method returns true if a string ends with a specified value.

Otherwise, it returns false:

Figure 65: JS Strings endsWith()

JavaScript Template Strings

Back-Tics Syntax

Template Strings use back-ticks (``) rather than the quotes ("") to define a string as shown

below:

Figure 66: Back-Tics Syntax

Interpolation

Template String provide an easy way to interpolate variables and expressions into strings.

The method is called string interpolation.

36

Figure 67: JS Template String Interpolation

JavaScript if, else, and else if

Conditional statements are used to perform different actions based on different conditions.

Conditional Statements

Very often when you write code, you want to perform different actions for different decisions.

You can use conditional statements in your code to do this.

In JavaScript we have the following conditional statements:

• Use if to specify a block of code to be executed, if a specified condition is true.

• Use else to specify a block of code to be executed, if the same condition is false.

• Use else if to specify a new condition to test, if the first condition is false.

• Use switch to specify many alternative blocks of code to be executed

The if Statement

Use the if statement to specify a block of JavaScript code to be executed if a condition is true.

Figure 68: JS if statement

The else Statement

Use the else statement to specify a block of code to be executed if the condition is false.

37

Figure 69: JS else statement

The else if Statement

Use the else if statement to specify a new condition if the first condition is false.

Figure 70: JS else if statement

JavaScript Switch Statement

The switch statement is used to perform different actions based on different conditions.

• The switch expression is evaluated once.

• The value of the expression is compared with the values of each case.

• If there is a match, the associated block of code is executed.

• If there is no match, the default code block is executed

38

Figure 71: JS switch statement

Note:

The break Keyword

• When JavaScript reaches a break keyword, it breaks out of the switch block.

• This will stop the execution inside the switch block.

39

• It is not necessary to break the last case in a switch block. The block breaks (ends) there

anyway.

The default Keyword

• The default keyword specifies the code to run if there is no case match:

Common Code Blocks

Sometimes you will want different switch cases to use the same code. In the code snippet below;

case 1 to case 5 share the same code block, and 6 and 0 share another code block:

Figure 72: JS switch statement (common code block)

Note:

40

• If multiple cases match a case value, the first case is selected.

• If no matching cases are found, the program continues to the default label.

If no default label is found, the program continues to the statement(s) after the switch.

JavaScript For Loop

Loops can execute a block of code a number of times.

Loops are handy, if you want to run the same code over and over again, each time with a

different value.

Different Kinds of Loops

JavaScript supports different kinds of loops:

• for - loops through a block of code a number of times

• while - loops through a block of code while a specified condition is true

• do/while - also loops through a block of code while a specified condition is true

The For Loop

The for statement creates a loop with 3 optional expressions:

Figure 73: JS for loop

Note:

• Expression 1 sets a variable before the loop starts (let x = 0).

• Expression 2 defines the condition for the loop to run (x must be less than 5).

• Expression 3 increases a value (x++) each time the code block in the loop has been

executed.

• Expression 1 is used to initialize the variable(s) used in the loop (let x = 0).

• But, expression 1 is optional.

• You can omit expression 1 when your values are set before the loop starts:

• Expression 2 is used to evaluate the condition of the initial variable (x < 5).

• But, expression 2 is also optional.

41

• If expression 2 returns true, the loop will start over again. If it returns false, the loop will

end.

• If you omit expression 2, you must provide a break inside the loop. Otherwise, the loop

will never end. This will crash your browser.

• Expression 3 increments the value of the initial variable (x++).

• But, expression 3 is also optional.

• Expression 3 can do anything like negative increment (x--), positive increment (x = x +

15), or anything else.

• Expression 3 can also be omitted (like when you increment your values inside the loop):

Figure 74: JS for loop II

JavaScript While Loop

Loops can execute a block of code as long as a specified condition is true.

Figure 75: JS while loop

Note:

• If you forget to increase the variable used in the condition, the loop will never end. This

will crash your browser.

42

The Do While Loop

The do while loop is a variant of the while loop. This loop will execute the code block once,

before checking if the condition is true, then it will repeat the loop as long as the condition is

true.

Figure 76: JS do while loop

Note:

• Do not forget to increase the variable used in the condition, otherwise the loop will never

end!

• while loop is much the same as a for loop, with statement 1 and statement 3 omitted.

JavaScript Break and Continue

The break statement “jumps out” of a loop.

The continue statement “jumps over” one iteration in the loop.

Figure 77: JS break statement

43

Note:

• In the code snippet above, the break statement ends the loop (“breaks” the loop) when the

loop counter (x) is 3.

The Continue Statement

The continue statement breaks one iteration (in the loop), if a specified condition occurs, and

continues with the next iteration in the loop.

Figure 78: JS continue statement

JavaScript Functions

A JavaScript function is a block of code designed to perform a particular task.

A JavaScript function is executed when “something” invokes it (calls it).

Figure 79: JS function syntax

• A JavaScript function is defined with the function keyword, followed by a name,

followed by parentheses ().

• Function names can contain letters, digits, underscores, and dollar signs (same rules as

variables).

• The parentheses may include parameter (argument) names separated by commas:

(parameter1, parameter2, ...)

• The code to be executed, b]y the function, is placed inside curly brackets: { }

Note:

44

• Function parameters (arguments) are listed inside the parentheses () in the function

definition.

• Function arguments are the values received by the function when it is invoked.

• Inside the function, the arguments (the parameters) behave as local variables.

When JavaScript reaches a return statement, the function will stop executing.

If the function was invoked from a statement, JavaScript will “return” to execute the code after

the invoking statement.

Functions often compute a return value. The return value is “returned” back to the “caller”:

Figure 80: JavaScript Function

JavaScript Arrow Function

Arrow functions were introduced in ES6.

Arrow functions allow us to write shorter function syntax:

Figure 81: JavaScript Arrow Function

45

Figure 82: Before Arrow Function

Figure 83: With Arrow Function

It gets shorter! If the function has only one statement, and the statement returns a value, you can

remove the brackets and the return keyword as shown below:

Figure 84: JS Arrow Function return value by default

If you have parameters, you pass them inside the parentheses as shown below:

Figure 85: JS Arrow Function with parameters

In fact, if you have only one parameter, you can skip the parentheses as well as shown below:

46

Figure 86: JS Arrow function without parentheses

Expense Tracker App (Practical 1)

Step 1: Create a folder js and create a Javascript file called script.js as shown below:

Figure 87: Creating script.js

Step 2: We will start working on the Good Morning, Mr. Piccolo section. We will use the date

object to make it dynamic based on the time the user opens the app to response with good

morning, good afternoon and good evening.

Step 3: in the app.html, add an id attribute with value of welcomeMsg to the div which contains

the welcome address message as shown below:

Figure 88: adding id attribute to welcome address div

47

Figure 89: Add the script.js link

Step 4: Create the welcomeMsg () function in the script.js file as shown below:

Figure 90: welcomeMsg()

48

Figure 91: Welcome Message

Figure 92: Welcome Message is now dynamic

49

JavaScript Events

HTML events are “things” that happen to HTML elements.

When JavaScript is used in HTML pages, JavaScript can “react” on these events.

An HTML event can be something the browser does, or something a user does.

Here are some examples of HTML events:

• An HTML web page has finished loading

• An HTML input field was changed

• An HTML button was clicked

Often, when events happen, you may want to do something.

JavaScript lets you execute code when events are detected.

HTML allows event handler attributes, with JavaScript code, to be added to HTML elements.

In the code snippet below, the JavaScript code changes the content of the element with id=

“header”.

Figure 93: JavaScript onclick event

Figure 94: displayDate function

50

Common HTML Events

Event Description

Onchange An HTML element has been changed

Onclick The user clicks an HTML element

Onmouseover The user moves the mouse over an HTML

element

Onmouseout The user moves the mouse away from an

HTML element

Onkeydown The user pushes a keyboard key

onload The browser has finished loading the page

JavaScript HTML DOM EventListener

The addEventListener() method attaches an event handler to the specified element.

The addEventListener() method attaches an event handler to an element without overwriting

existing event handlers.

You can add many event handlers to one element.

You can add many event handlers of the same type to one element, i.e. two “click” events.

You can add event listeners to any DOM object not only HTML elements. i.e. the window object.

The addEventListener() method makes it easier to control how the event reacts to bubbling.

When using the addEventListener() method, the JavaScript is separated from the HTML

markup, for better readability and allows you to add event listeners even when you do not control

the HTML markup.

You can easily remove an event listener by using the removeEventListener() method.

51

Figure 95: JavaScript addEventListener()

Figure 96: JavaScript addEventListener() II

Expense Tracker App (Practical II)

Step 1: Let’s work on the dark-mode. We will create a toggle; the user can toggle to switch from

light to dark mode.

Figure 97: creating dark mode

52

Step 2: Uncomment the icon and add the label as shown below:

Figure 98: Creating dark mode II

Step 3: Now, we have three icons, the light, dark and logout icons.

Step 4: add id attributes to the light and dark icon as shown below:

53

Figure 99: Creating dark mode III

Figure 100: Creating dark mode IV

Step 9: lets hide the light icon.

Figure 101: hiding the light icon

54

Figure 102: Light mode is hidden

Step 10: Create a function for the dark mode styling as shown below:

55

Figure 103: Dark Mode Styling function

56

Figure 104: dark mode class

Figure 105: Light Mode

Figure 106: Dark Mode

57

JavaScript Objects

If you Understand Objects, you Understand JavaScript.

In real life, objects are things like: houses, cars, people, animals, or any other subjects.

Here is a car object example:

Car Object Car Properties Car Methods

car.name = Honda

car.model = 2025

car.weight = 1850kg

car.color = white

car.start()

car.drive()

car.brake()

car.stop()

Object Properties

A real-life car has properties like weight and color:

car.name = Honda, car.model = 2025, car.weight = 1850kg, car.color = white.

Car objects have the same properties, but the values differ from car to car.

Object Methods

A real-life car has methods like start and stop:

car.start(), car.drive(), car.brake(), car.stop().

Car objects have the same methods, but the methods are performed at different times.

Note:

Objects are variables too. But objects can contain many values.

The code below assigns many values (Honda, 2025, white) to an object named car:

58

Figure 107: JS Object

Accessing Object Properties

You can access object properties in two ways as shown below:

Figure 108: objectName.propertyName

Figure 109: objectName['propertyName']

JavaScript Object Methods

Methods are actions that can be performed on objects.

59

Methods are function definitions stored as property values.

Figure 110: JS Object Methods

Note: In the example above, this refers to the car object:

JavaScript Object Properties

An Object is an Unordered Collection of Properties

• Properties are the most important part of JavaScript objects.

• Properties can be changed, added, deleted, and some are read only.

Adding New Properties

You can add new properties to an existing object by simply giving it a value as shown below:

Figure 111: Adding New property to an Object

60

Deleting Properties

The delete keyword deletes a property from an object as shown below:

Figure 112: Deleting property from an Object

Note:

• The delete keyword deletes both the value of the property and the property itself.

• After deletion, the property cannot be used before it is added back again.

Nested Objects

Property values in an object can be other objects.

61

Figure 113: Nested Object

JavaScript Object Methods

Object methods are actions that can be performed on objects.

A method is a function definition stored as a property value

Figure 114: JS Object Methods

Using JavaScript Methods

JavaScript have built-in methods. The code snippet below uses the JavaScript toLowerCase()

method to convert the coursesRegistered method to lowercase:

62

Figure 115: Using JS methods

JavaScript Display Objects

JavaScript objects can be displayed by:

• Displaying the Object Properties by name

• Displaying the Object Properties in a Loop

• Displaying the Object using Object.values()

• Displaying the Object using JSON.stringify()

Displaying Object Properties

The properties of an object can be displayed as a string:

Figure 116: Displaying Object Properties

63

Displaying Properties in a Loop

The properties of an object can be collected in a loop:

Figure 117: Displaying Properties using Loop

Using Object.values()

Object.values() creates an array from the property values:

64

Figure 118: Using Object.values()

Using JSON.stringify()

JavaScript objects can be converted to a string with JSON method JSON.stringify().

JSON.stringify() is included in JavaScript and supported in all major browsers.

65

Figure 119: Using JSON.stringify()

JavaScript Arrays

An array is a special variable, which can hold more than one value.

Figure 120: JS arrays

Why Use Arrays?

If you have a list of items (a list of countries, for example), storing the countries in single

variables could look like this:

Figure 121: JS Arrays List of countries

66

However, what if you want to loop through the countries and find a specific one? And what if

you had not 4 countries, but all the countries in the world?

The solution is an array!

An array can hold many values under a single name, and you can access the values by referring

to an index number.

Accessing Array Elements

You access an array element by referring to the index number:

Note:

• Array indexes start with 0.

• [0] is the first element. [1] is the second element.

Figure 122: JS accessing array elements

Changing an Array Element

The code snippet below changes the value of the third element in the countries array from

‘Niger’ to ‘Gabon’:

Figure 123: Changing an Array Element

Converting an Array to a String

The JavaScript method toString() converts an array to a string of (comma separated) array

values.

67

Figure 124: Converting an Array to String

The length Property

The length property of an array returns the length of an array (the number of array elements).

Figure 125: JS array length property

Looping Array Elements

One way to loop through an array, is using a for loop:

Figure 126: Loop through an Array

You can also use the Array.forEach() function

68

Figure 127: Loop through an Array using forEach()

Adding Array Elements

The easiest way to add a new element to an array is using the push() method:

Figure 128: JS array push()

The Difference Between Arrays and Objects

• In JavaScript, arrays use numbered indexes.

• In JavaScript, objects use named indexes

When to Use Arrays. When to use Objects.

• You should use objects when you want the element names to be strings (text).

• You should use arrays when you want the element names to be numbers.

JavaScript Array Methods

JavaScript Array at()

ES2022 introduced the array method at():

69

Figure 129: JS array at() method

JavaScript Array join()

The join() method also joins all array elements into a string.

It behaves just like toString(), but in addition you can specify the separator.

Figure 130: JS array join() method

When you work with arrays, it is easy to remove elements and add new elements.

This is what popping and pushing is:

Popping items out of an array, or pushing items into an array.

JavaScript Array pop()

The pop() method removes the last element from an array:

Figure 131: JS array pop() method

JavaScript Array push()

The push() method adds a new element to an array (at the end):

70

Figure 132: JS array push() method

JavaScript Array shift()

The shift() method removes the first array element and “shifts” all other elements to a lower

index.

Figure 133: JS array shift() method

JavaScript Array unshift()

The unshift() method adds a new element to an array (at the beginning), and “unshifts” older

elements:

Figure 134: JS array unshift() method

Note:

• Using delete() leaves undefined holes in the array.

• Use pop() or shift() instead.

JavaScript Array splice()

The splice() method can be used to add new items to an array:

71

Figure 135: JS array splice() method

Note:

• The first parameter (2) defines the position where new elements should

be added (spliced in).

• The second parameter (0) defines how many elements should be removed.

• The rest of the parameters (‘Mali’ , ‘Togo’) define the new elements to be added.

Using splice() to Remove Elements

With clever parameter setting, you can use splice() to remove elements without leaving

“holes” in the array:

Figure 136: JS array splice() method to remove elements

Note:

• The first parameter (0) defines the position where new elements should be added (spliced

in).

• The second parameter (1) defines how many elements should be removed.

• The rest of the parameters are omitted. No new elements will be added.

JavaScript Array slice()

The slice() method slices out a piece of an array into a new array:

72

Figure 137: JS array slice()

Note:

• The code snippet above sliced out a part of an array starting from array element 1

(‘Nigeria’)

• The slice() method creates a new array.

• The slice() method does not remove any elements from the source array.

JavaScript Array Search

JavaScript Array indexOf()

The indexOf() method searches an array for an element value and returns its position.

Figure 138: JS array indexOf() method

JavaScript Array includes()

ECMAScript 2016 introduced Array.includes() to arrays. This allows us to check if an element

is present in an array (including NaN, unlike indexOf)

Figure 139: JS array includes() method

JavaScript Array find()

The find() method returns the value of the first array element that passes a test function.

This example finds (returns the value of) the first element that is larger than 18

73

Figure 140: JS array find() method

JavaScript Array findIndex()

The findIndex() method returns the index of the first array element that passes a test function.

The code snippet below finds the index of the first element that is larger than 8.

Figure 141: JS array findIndex() method

JavaScript Sorting Arrays

Sorting an Array

The sort() method sorts an array alphabetically.

Figure 142: JS array sort() method

74

Reversing an Array

The reverse() method reverses the elements in an array.

Figure 143: JS array reverse() method

Note:

• By combining sort() and reverse(), you can sort an array in descending order

JavaScript Array toSorted() Method

ES2023 added the toSorted() method as a safe way to sort an array without altering the

original array.

The difference between toSorted() and sort() is that the first method creates a new array,

keeping the original array unchanged, while the last method alters the original array.

JavaScript Array toReversed() Method

ES2023 added the toReversed() method as a safe way to reverse an array without altering the

original array.

The difference between toReversed() and reverse() is that the first method creates a new array,

keeping the original array unchanged, while the last method alters the original array.

JavaScript Array Iteration

JavaScript Array forEach()

The forEach() method calls a function (a callback function) once for each array element.

75

Figure 144: JS array forEach() method

Expense Tracker App (Practical 3)

Step 1:

Next, let start working on the form, when the user adds the expense and price, it will be added to

the expense list.

Step 2:

Add an id attribute to both the expense name and the price input boxes as shown below:

Figure 145: Adding id to form input boxes

Step 3:

Write the following script to check if everything is set

76

Figure 146: keyup EventListener

Figure 147: Working perfectly

Step 4: Let’s store the values in a variable as shown below:

Figure 148: Storing the variables

Step 5: Let’s print the values of the variables when the user clicks on the add button

77

Figure 149: Printing the variables

Figure 150: Printing the variables II

Step 6: Let’s create a default object and add the expense list as shown below:

78

Figure 151: Default expenses data

Step 7: Let’s remove the hardcoded expenses list we have in our app.html file as shown below:

79

Figure 152: Hardcoded data

80

Figure 153: New div created

Figure 154: Items removed

Figure 155: Loop and display the expenses data

81

Figure 156: The items are displayed

Step 8: Now let’s create the total.

Figure 157: Sum the total Expense

82

Figure 158: Showing total

Step 9: Let’s make it dynamic, once we click on the add button, the items will be added to the

expenses data.

Figure 159: adding new item to the expense data

83

Figure 160: the item has been added

Step 10: Let’s update our UI, to make it render dynamic

84

Figure 161: Updated Script to render the UI

85

Figure 162: New item added and the UI have been updated

Step 11: If you notice, once we reloaded the page, the new data are deleted. To resolve this, we

will use JavaScript localStorage.

86

87

88

Figure 163: Updated Code

89

Figure 164: Now the data are stored

Step 12: Remove an item from the list

90

91

Figure 165: Add delete

Figure 166: Complete Expense Tracker App

92

JavaScript Array map()

The map() method creates a new array by performing a function on each array element.

The map() method does not execute the function for array elements without values.

The map() method does not change the original array.

This example multiplies each array value by 2:

Figure 167 JS array map() method

Note: When a callback function uses only the value parameter, the index and array parameters

can be omitted.

JavaScript Array filter()

The filter() method creates a new array with array elements that pass a test.

This example creates a new array from elements with a value less than 18

Figure 168: JS array filter() method

JavaScript Array Spread (...)

The ... operator expands an iterable (like an array) into more elements:

93

Figure 169: JS array spread (...)

JavaScript Maps

A Map holds key-value pairs where the keys can be any datatype.

A Map remembers the original insertion order of the keys.

How to Create a Map

You can create a JavaScript Map by:

• Passing an Array to new Map()

• Create a Map and use Map.set()

The new Map() Method

You can create a Map by passing an Array to the new Map() constructor:

Figure 170: JS new Map() constructor

The set() Method

You can add elements to a Map with the set() method:

94

Figure 171: JS map set() method

The get() Method

The get() method gets the value of a key in a Map:

Figure 172: JS map get() method

Map.size

The size property returns the number of elements in a map:

Figure 173: JS map size property

Map.delete()

The delete() method removes a map element:

95

Figure 174: JS map delete() method

Map.clear()

The clear() method removes all the elements from a map:

Figure 175: JS map clear() method

Map.has()

The has() method returns true if a key exists in a map:

Figure 176: JS map has() method

Map.forEach()

The forEach() method invokes a callback for each key/value pair in a map:

96

Figure 177: JS Map forEach() method

Map.entries()

The entries() method returns an iterator object with the [key,values] in a map:

Figure 178: JS Map entries() method

97

Map.keys()

The keys() method returns an iterator object with the keys in a map:

Figure 179: JS array keys() method

Map.values()

The values() method returns an iterator object with the values in a map:

98

Figure 180: JS array values() method

References

1) https://www.w3schools.com/js/default.asp

2) https://www.w3schools.com/js/js_whereto.asp

3) https://www.w3schools.com/js/js_output.asp

4) https://www.w3schools.com/js/js_variables.asp

5) https://www.w3schools.com/js/js_operators.asp

6) https://www.w3schools.com/js/js_comparisons.asp

7) https://www.w3schools.com/js/js_datatypes.asp

8) https://www.w3schools.com/js/js_functions.asp

9) https://www.w3schools.com/js/js_arrow_function.asp

10) https://www.w3schools.com/js/js_objects.asp

11) https://www.w3schools.com/js/js_object_property.asp

12) https://www.w3schools.com/js/js_object_method.asp

13) https://www.w3schools.com/js/js_object_display.asp

14) https://www.w3schools.com/js/js_object_constructors.asp

15) https://www.w3schools.com/js/js_events.asp

16) https://www.w3schools.com/js/js_htmldom_eventlistener.asp

https://www.w3schools.com/js/default.asp
https://www.w3schools.com/js/js_whereto.asp
https://www.w3schools.com/js/js_output.asp
https://www.w3schools.com/js/js_variables.asp
https://www.w3schools.com/js/js_operators.asp
https://www.w3schools.com/js/js_comparisons.asp
https://www.w3schools.com/js/js_datatypes.asp
https://www.w3schools.com/js/js_functions.asp
https://www.w3schools.com/js/js_arrow_function.asp
https://www.w3schools.com/js/js_objects.asp
https://www.w3schools.com/js/js_object_property.asp
https://www.w3schools.com/js/js_object_method.asp
https://www.w3schools.com/js/js_object_display.asp
https://www.w3schools.com/js/js_object_constructors.asp
https://www.w3schools.com/js/js_events.asp
https://www.w3schools.com/js/js_htmldom_eventlistener.asp

99

17) https://www.w3schools.com/js/js_strings.asp

18) https://www.w3schools.com/js/js_string_methods.asp

19) https://www.w3schools.com/js/js_string_search.asp

20) https://www.w3schools.com/js/js_string_templates.asp

21) https://www.w3schools.com/js/js_arrays.asp

22) https://www.w3schools.com/js/js_array_methods.asp

23) https://www.w3schools.com/js/js_array_search.asp

24) https://www.w3schools.com/js/js_array_sort.asp

25) https://www.w3schools.com/js/js_if_else.asp

26) https://www.w3schools.com/js/js_switch.asp

27) https://www.w3schools.com/js/js_loop_for.asp

28) https://www.w3schools.com/js/js_loop_while.asp

29) https://www.w3schools.com/js/js_break.asp

30) https://www.w3schools.com/js/js_maps.asp

https://www.w3schools.com/js/js_strings.asp
https://www.w3schools.com/js/js_string_methods.asp
https://www.w3schools.com/js/js_string_search.asp
https://www.w3schools.com/js/js_string_templates.asp
https://www.w3schools.com/js/js_arrays.asp
https://www.w3schools.com/js/js_array_methods.asp
https://www.w3schools.com/js/js_array_search.asp
https://www.w3schools.com/js/js_array_sort.asp
https://www.w3schools.com/js/js_if_else.asp
https://www.w3schools.com/js/js_switch.asp
https://www.w3schools.com/js/js_loop_for.asp
https://www.w3schools.com/js/js_loop_while.asp
https://www.w3schools.com/js/js_break.asp
https://www.w3schools.com/js/js_maps.asp

